
Geant-4's capabilities: kernel and auxiliary parts

> John Apostolakis, CERN for Geant4 collaboration

Contents

Geant4: brief history Overview of Geant4

- kernel's power
- additional abilities

Some experiences with ver. 4.0.0
 Status and plans

Geant4 Context

Geant4: project & collaboration

- was developed by RD44 project
- RD44 ended with first production release
 version 4.0.0 @ end 98

New Geant4 collaboration

- for production service, maintainance and to continue to develop Geant4
- is made of experiments, laboratories & institutes

Geant4 Capabilities

Very powerful Geant4 kernel • tracking, stacks, geometry, hits, ... Extensive & transparent physics models • electromagnetic, hadronic, ... (next talk) Additional capabilities/interfaces • persistency, visualization, ... Surpasses Geant-3 in nearly every respect

June 18, 1999

Geant4 kernel: run/event

Includes categories for run, event, track One computing process can have many runs

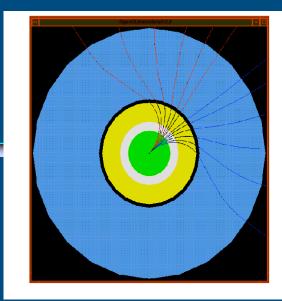
Run

- each run has a fixed geometry & event-generator
- can do many runs in one job / process

Event:

- Manages track creation
- Stacks for inactive tracks
 - 3 default stacks
 - very powerful
 - no cost!

Geant4 kernel: tracking


Tracking is general

- same for all particle types
- different list of processes for each particle

It messages

sensitive detectors and user actions

So anyone can add their physics model
 simply, without restrictions or problems

Geant4 kernel: other

Hits & digitization

• Experiment specific hits

Handles event pileup

 using new readout category

Materials

- isotopes, elements,
- compounds, ...

Particles

- properties from PDG
- Intercoms: Communicate
 - between categories,
 - from UI to kernel

Geometry

- hierarchy or flat
- performant

June 18, 1999

Electro-Magnetic physics

Gammas:

Gamma-conversion, Compton scattering, Photo-electric effect

Leptons(e, mu) + charged particles(hadrons, ions): Jonisation, Bremstrahlung, Energy loss, Multiple scattering, transition radiation, Synchrotron radiation, PAI model energy loss

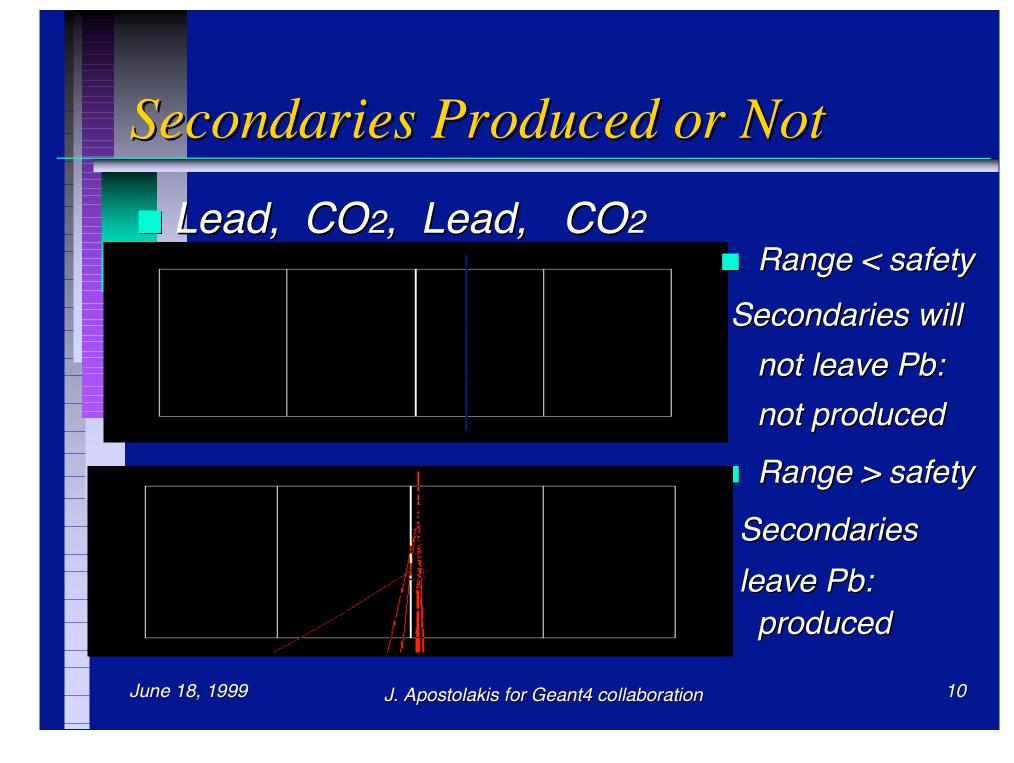
Photons:

Cerenkov, Rayleigh, Reflection, Refraction, Absorption, Scintillation
 High energy muons and lepton-hadron interactions
 Implementation of physics to 1 KeV

in development version

Electromagnetic processes

All processes at least at level of Geant-3 New process: Transition radiation


Multiple Scattering: new model

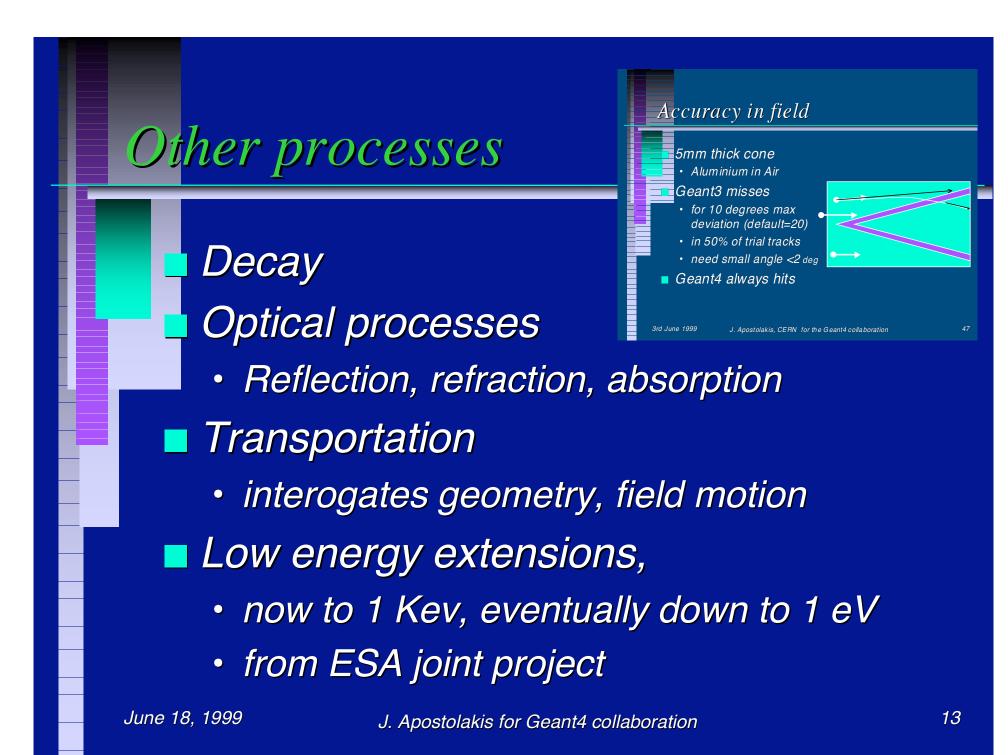
- no path length restriction
- added lateral displacement
 - measured effect on result

Energy Loss: two approaches

- two approaches: differential and integral
- several alternatives: PAI model (thin), Super E-loss
- Integration of cross section over Energy
 - DE/E not constrained for e+/e-
 - hadronic resonances can be seen (future)

June 18, 1999

Cuts: production & user


Coherent "production cuts" validity range of models fully exploited kernel can enforce consistent production cuts - yet processes can ask to override when they need to. treatment of boundary effects (Figures) Cuts in range rather than Energy - Geant3 used cuts in Energy - inefficient - significant gain in results quality vs CPU usage User can cut in Energy, track length, TOF ...

Parameterization/Fast Simulation

Fast Simulation Manager

- Framework for parameterization
- Takes over from detailed simulation
- can return to detailed simulation (eg cracks)
- Can trigger on particle, volume, ..
 - Parallel geometrical description

BaBar is developing Bogus based on this.

Examples and Documentation

Six examples

- simple detectors
- different experiment types
- demonstrate essential capabilities

Documentation:

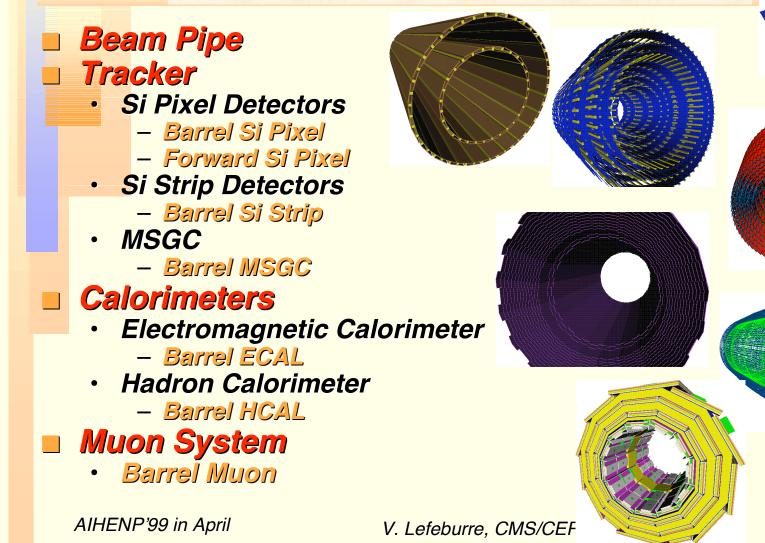
- Getting started & installation guide
- User guide for application & toolkit developer
- Software & physics reference manuals
- G4 URL:

http://wwwinfo.cern.ch/asd/geant/geant4.html

June 18, 1999

Geant4 geometry: what it does

Describes a Detector
Hierarchy of volumes
Many volumes repeat
Volume & sub-tree
Up to millions of
volumes for LHC era
Import detectors from
CAD systems


Navigates in Detector
Locates a point
Computes a step

Linear intersection

Field propagation

CMS Geometry in GEANT4

current status

Full tracking performance

Honeycomb calorimeter

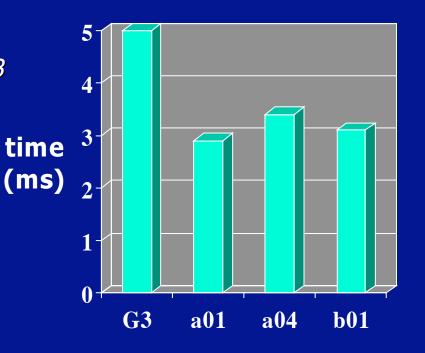
shooting geantinos

Geometry

- hand optimised in Geant3
- automatic in Geant4

Tracking

- specialised in Geant3
- general in Geant4

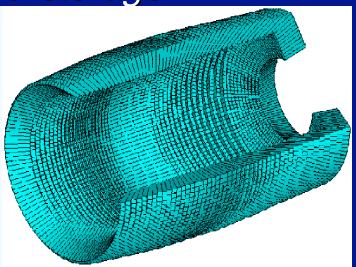

Tracking optimisation

since beta01

June 18, 1999

J. Apostolakis for Geant4 collaboration

Geantino tracking time



Object Persistency: Hits & other

- *To* store hits, use object persistency
- Abstract interface
 - ODBMS solution via RD45 (Objectivity)
 - Tracker-type and calorimeter-type hits
 - Saw minimal performance & storage
 overhead
- Minimal modifications
 - G4 kernel untouched
- Also store:
 - Trajectories, Runs,
 - Events, Geometry

June 18, 1999

J. Apostolakis for Geant4 collaboration

18

Visualization

The most-used functionality is implemented Several drivers:

 OpenGL, VRML, Open Inventor, Opacs, DAWN renderer (G4)

Also choice of User Interfaces:

- Terminal (text) or
- GUI: Momo (G4), OPACS

Experiences with Geant4

Production release in use

- used, got feedback
 from 5 experiments
- first results confirm some of G4's strengths

 in EM physics, geometry, hadronic physics
- First EM physics benchmarks
 - Geant4 gives better physics @ same speed
 - Geant4 gives better speed for same physics

Consolidation release 4.0.1 imminent

Summary

How we did it

Very powerful kernel

- general tracking
- stacking at no cost
- user choice of
 - processes
 - actions (run, step, ...)
- *Extensive physics models*
 - EM, hadronic

G4 URL:

http://wwwinfo.cern.ch/asd/g eant/geant4.html

- Software Engineering in HEP
- The software process: distributed development
- **ESA** *PSS-05: URD v.06*
- Object-Oriented methodology: Booch+unified
- OOA&D: Rational Rose CASE
- QA: Insure, Logiscope, code inspection, coding guidelines, scripts
- Testing at class-level (ex: 375 test-cases for processes)