

for microdosimetry

Radiobiology, nanotechnology, radiation effects on components

S. Chauvie (*Cuneo Hospital and INFN Genova*) Maria Grazia Pia (INFN Genova)

Workshop: La radiobiologia dell'INFN Trieste, 7 February 2008

Courtesy ATLAS Collaboration

Born from the requirements of large scale HEP experiments

Widely used also in

- Space science and astrophysics
- Medical physics, nuclear medicine
- Radiation protection
- Accelerator physics
- Humanitarian projects, security
- etc.

Technology transfer to industry, hospitals...

Courtesy R. Nartallo et al.,ESA

S. Agostinelli et al. <u>GEANT4 - a simulation toolkit</u> *NIM A 506 (2003) 250-303*

Most cited (>132000 papers) "Nuclear Science and Technology" publication!

3rd most cited INFN paper

Multi-disciplinary application environment

Wide spectrum of physics coverage, variety of physics models Precise, quantitatively validated physics Accurate description of geometry and materials Maria Grazia Pia, INFN Genova

Geant 4 Multiple domains in the same software environment

Macroscopic level

- calculation of dose
- already feasible with Geant4
- develop useful associated tools

Intermediate level

- statistical models
- processes for cell survival, damage etc.

Microscopic level

- physics processes at the eV scale
- bio-chemical processes etc.

Parallel development at all the three levels

(domain decomposition)

software, physics and biology addressed with an iterative and incremental software process

Complexity of

Orticultura '

What's new in Geant4?

Many "track structure" Monte Carlo codes previously developed

- A lot of modelling expertise embedded in these codes
- Each code implements one modelling approach (developed by its authors)
- "Stand-alone" codes, with limited application scope
- Legacy software technology (FORTRAN, procedural programming)
- Not publicly distributed

Geant4

- "Track structure" simulation in a general-purpose Monte Carlo system
- Toolkit approach: many interchangeable models (no emotional attachment to any)
- Advanced software technology
- Rigorous software process
- **Open source**, freely available, supported by an international organization
- Foster a **collaborative** spirit in the scientific community
- Benefit of the **feedback** of a wider user community

INFN Genova – Partly sponsored by ESA

Sub-domain of

Geant4 Low-Energy Electromagnetic Physics Follows the same rigorous software standards

rather...

Not only...

Radiobiology Radiation effects on components Nanotechnology-based detectors

Commonality

across experimental domains

Physics issues

Models depend on the detailed dielectric structure of the interacting material

Computational stress

CPU-intensive simulation for tracks at the nm scale

Solution

Commonality-differentiation

Technology

New software design technique first introduced in Monte Carlo

Modelling

Multiple implementations No "one size fits all" in this domain 1st development cycle: Geant4 physics extensions

Physics of interactions in water down to the eV scale

Complex domain

- **Physics**: collaboration with theorists
- Technology: innovative design technique introduced in Geant4 (1st time in Monte Carlo)

Experimental complexity as well

- Scarce experimental data
- Collaboration with experimentalists for model validation
- Geant4 physics validation at low energies is difficult!

S. Chauvie et al., Geant4 physics processes for microdosimetry simulation: design foundation and implementation of the first set of models, IEEE Trans. Nucl. Sci., Vol. 54, no. 6, pp. 2619-2628, Dec. 2007

Geant4-DNA physics processes

Specialised processes for low energy interactions with water

Models in liquid water

- More realistic than water vapour
- Theoretically more challenging
- Hardly any experimental data
- New measurements needed

Status

- 1st β -release Geant 48.1 2006
- Full release December 2007
- Further extensions in progress

Current focus

– Experimental comparisons

Toolkit: offer a wide choice among available alternative models for each process

Particle	Processes
e⁻	Elastic scattering Excitation Ionisation
р	Charge decrease Excitation Ionisation
Н	Charge increase Ionisation
He++	Charge decrease Excitation Ionisation
He+	Charge decrease Charge increase Excitation Ionisation
He	Charge increase Excitation Ionisation

What is behind... Policy-based class design

- A policy defines a class or class template interface
- Policy host classes are parameterised classes
 - classes that use other classes as a parameter
- Advantage w.r.t. a conventional strategy pattern
 - Policies are not required to inherit from a base class
 - The code is bound at compilation time
 - No need of virtual methods, resulting in faster execution

Technology motivated by scientific requirements!

Weak dependency of the policy and the policy based class on the policy interface

Syntax-oriented rather than signature-oriented

Highly **customizable** design **Open to extension**

Policies can proliferate w/o any limitation

Maria Grazia Pia, INFN Genova

New technology 1st time introduced in Monte Carlo

Geant4-DNA physics process

Handled transparently by Geant4 kernel

G4VProcess (from processes management)

+ AlongStepDolt()

- + AlongStepGetPhysicalInteractionLength()
- + AtRestDolt()
- + AtRestGetPhysicalInteractionLength()
- + PostStepDolt()
- + PostStepGetPhysicalInteractionLength()
- + IsApplicable()

Deprived of any intrinsic physics functionality

Configured by template specialization to acquire physics properties

Development metrics

• Open to extension: what does it mean in practice?

Implementation + unit test of a new physics model
 - ~ 5 to 7 hours* (low level C++ programming experience)
 No integration effort at all

Investment in software technology!

*...provided theorists have previously done their job by doing the theoretical calculation!

How **accurate** are Geant4-DNA physics models ?

- Both theoretical and experimental complexity in the very low energy régime
- Theoretical calculations must take into account the detailed dielectric structure of the interacting material
 - Approximations, assumptions, semi-empirical models
- Experimental measurements are difficult
 - Hardly any experimental data in liquid water
 - Control of systematics, experimental constraints depending on the phase
- Evaluation of **plausibility**
 - Only practical option at the present stage
 - Comparison against experimental data in water vapour/ice
 - Interesting also to study phase-related effects

Electron elastic scattering: total cross section

Not all available experimental data reported... the picture would be too crowded!

Evident discrepancy of the experimental data

 Puzzle: inconsistency in recommended evaluated data from *Itikawa & Mason, J. Phys. Chem. Ref. Data, 34-1, pp. 1-22, 2005.*

Geant4

- Better agreement with some of the data sets
- Hardly conclusive comparison, given the experimental status...

Electron ionisation: total cross section

Different phases

- Geant4-DNA model: liquid water
- Experimental data: vapour
- Plausible behaviour of Geant4 implementation

 Phase differences appear more significant at lower energies

Proton ionisation: total cross section

Different phases Geant4 model: liquid water Experimental data: vapour

- All measurements performed by the same team
 - at different accelerators and time
- Even data taken by the same group exhibit inconsistencies !
 - systematic is difficult to control in delicate experimental conditions
- Geant4 models look plausible
- Hard to discuss phase effects in these experimental conditions!

Goodness-of-fit test

- Geant4 model incompatible with experimental data (*p-value < 0.001*)
- Compatibility w.r.t. data fit?
 Cramer-von Mises test: *p-value* = 0.1
 Anderson-Darling test: *p-value* <0.001

Charge change cross section: proton and hydrogen

Different phases

- Geant4 model: liquid
- Experimental data: vapour
- Goodness-of-fit test
 - Geant4 model
 - experimental data (white symbols only)
 - Anderson-Darling test
 - Cramer-von Mises test
 - Kolmogorov-Smirnov test
 - Kuiper test
 - Watson test
 - p-value > 0.1 from all tests

... but some data were used to optimise the semi-empirical model!

Conclusion from comparisons

 Geant4-DNA models (liquid) look plausible when compared to available experimental data (vapour)

More experimental data are needed

- In **liquid water** for simulation model validation
- In vapour and ice to study the importance of phase effects in modelling particle interactions with the medium
- With good control of systematic and reproducibility of experimental conditions!
- Hard to draw firm conclusions about phase effects
 - Available experimental data exhibit significant discrepancies in many cases
 - Some of these data have been already used to constrain or optimize semiempirical models

Exploiting the toolkit

For the first time a general-purpose Monte Carlo system is equipped with functionality specific to the simulation of biological effects of radiation

User application

Microdosimetry with Geant4 in high resolution cellular phantoms at CENBG

© IPB/CENBG

freely usable INFN original ideas, technology and software developments in an open-source software environment

Changing scale

Parallel approach: macroscopic modelling in Geant4

- Concept of **dose** in a **cell population**
- Statistical evaluation of radiation effects from empirical data
- In the same simulation environment \Rightarrow toolkit

Human cell lines irradiated with X-rays

For discussion...

- Geant4 proposes a paradigm shift
 - Open source, freely available software
 - Microdosimetry functionality in a general-purpose Monte Carlo code
 - Availability of multiple models in the same environment
 - Equal importance to **functionality** and **software technology**
 - Foster collaboration within the scientific community
 - Theoretical modelling, experimental measurements, software technology
 - Promote feedback from users of the software
- Same environment for different research areas:
 - Radiobiology
 - Detector R&D, nanotechnology
 - Radiation effects on components, electronics
- Comments and suggestions are welcome...

Acknowledgment

- Thanks to
 - M. Dingfelder and D. Emfietzoglou for theoretical support
 - W. Friedland and H. Paretzke for fruitful discussions and suggestions
 - G. Cosmo and I. McLaren for support in the Geant4 system testing process
 - K. Amako for support in releasing the Geant4-DNA code documentation
 - Z. W. Bell (ORNL) for constructive advice
 - CERN Library for providing many reference papers