# Geant4 and Fano cavity: where are we?

Sabine Elles<sup>1</sup>, Vladimir Ivanchenko<sup>2</sup>, Michel Maire<sup>1</sup>, **Laszlo Urban**<sup>3</sup>

1 : LAPP, Annecy-le-Vieux, France

2: CERN, Geneva, Switzerland

3: RMKI, Budapest, Hungary

Monte Carlo techniques in radiotherapy delivery and verification
Third McGill International Workshop
Montreal - 2007

## Outline

## The Fano cavity setup allows to test the quality of low energy electrons transport algorithms

Fano cavity principle
Electron transport algorithm in Geant4
step limitation - end of step

Evolution of the electron transport algorithm mean energy loss and energy fluctuation computation multiple scattering

Global effect

### Fano cavity principle

Materials 1 and 2 : same A, but different density  $\rho$ 1 and  $\rho$ 2  $\Rightarrow \left(\frac{1}{\rho}\frac{dE}{dx}\right)_1 = \left(\frac{1}{\rho}\frac{dE}{dx}\right)_2$ 



beam energy fluence: 
$$\Phi = \frac{nE_{\gamma}}{S_1}$$

dose in material 2: D

energy transfert coefficient : 
$$\mu_{tr}(E_{\gamma}) = \sigma_{tot}(E_{\gamma}) \frac{\langle T \rangle}{E_{\gamma}}$$

 $\langle T \rangle$  is the mean kinetic energy of emited  $e^-$ 

Under charged particle equilibrium condition:

$$\frac{D}{\Phi(E_{\gamma})} = \left(\frac{\mu_{tr}(E_{\gamma})}{\rho}\right)_{1} = \text{const}$$

i.e. independent of the tracking parameters of the simulation

## Geant4 v 6.2 results

#### E. Poon and al. (Phys. Med. Biol, Feb 2005)

Evaluation of the consistency of the cavity response for different parameters of Geant4

Defining 
$$K = \left(\frac{\mu_{tr}}{\rho}\right) \Phi$$
 basic equation becomes  $\frac{D}{K} = 1$ 



**Ionization chamber** 



Most accurate results for Fano test

G4 6.2 default parameters : dRoverRange=1, RangeFactor=0.2

#### Geant4 v 6.2 vs 8.01

#### First step: reproduce 6.2 results and test 8.01 release

v 6.2 : RangeFactor = 0.2 v 8.1 : RangeFactor = 0.02

~ 4.108 events per point



v 6.2 : aberrant point for dRoverRange = 1

#### Electron transport algorithm in Geant4: e- step limitation from physics

#### There are 4 step limitation constraints:

Ionization and brems production threshold (aka Cut)

#### Continuous energy loss

max fractional energy loss per step. Step/Range < dRoverRange down to a certain limit : finalRange

#### Multiple scattering

limit defined at first step and reevaluated after a boundary, to allow back scattering of low energy e

```
step = RangeFactor * max(range, \lambda) ( \lambda : transport mean free path )
```

geometry: force more than 1 step in any volume: GeomFactor 4

#### Electron transport algorithm in Geant4: end of a step

multiple scattering  $\Rightarrow$  true path length t computation compute mean energy loss along t :  $<\Delta E>$  add energy loss fluctuation :  $dE = f(<\Delta E>)$ 

multiple scattering again  $\Rightarrow$  lateral displacement and deflection secondary generation, if any : e- or  $\gamma$  , energy  $T_{kin}$ 



#### **Energy balance**

$$E_1 - E_2 = \langle \Delta E \rangle + dE + T_{kin}$$

#### Evolution of the electron transport algorithm since version 8.0

#### The main evolutions concern:

Mean energy loss and energy fluctuation computation

$$E_1 - E_2 = \langle \Delta E \rangle + dE + T_{kin}$$

Step limitations constraints for multiple scattering process

new default values for RangeFactor and GeomFactor

Single scattering while crossing boundaries

#### Mean energy loss computation $<\Delta E>$ alone

#### Mean energy loss computation algorithm:

 $<\Delta E>$  is computed from Range and inverse Range tables :

$$<\Delta E> = E(R_1) - E(R_2)$$

For small steps a linear approximation is used:

$$<\Delta E> = (dE/dx)*step$$

under the constraint : step/Range < linLossLimit



Problem: the default *linLossLimit* (0.05) value was too big

Test case: fluct and msc are switched off

⇒ e- transport determinist and only governed by dRoverRange

(for a fixed value of finalRange =  $10 \mu m$ )

new default : *linLossLimit* = 1.e-06

complete stability but shift ~ 4 per mille



#### Energy loss fluctuation computation dE alone

In simulation, we cannot use Laudau distribution which assumes no δ-rays production ⇒ double counting

Geant has its own model of fluctuations which is cut and material dependent
(L. Urban, NIM A362(1995) 416)



#### Problem:

the model was deficient for small energy loss: small steps or in gas

enhanced model in Geant4 8.2 ref3
(Geant4 Physics Reference Manual, April 2007)

#### Energy loss fluctuation computation dE alone

#### Fano cavity response (multiple scattering is switched off)



⇒ Stability ~ 3 per mille

#### Step limitations constraints for multiple scattering

#### **Step limitations**

RangeFactor: 0.2  $\rightarrow$ 0.02, applied to the whole track (v8.0, January 2006) GeomFactor:  $1\rightarrow3$ 

#### Multiple scattering final state

single Coulomb scattering near boundaries (ref3, April 2007)

few very small steps ( $\sim \lambda$  elastic) while crossing boundaries over a thickness defined by  $skin^*\lambda$ 

apply approximate single Coulomb scattering

better evaluation of lateral displacement: reevaluate safety radius before to perform lateral displacement

⇒ displ < safety (safety was often underestimated)

correlate final direction (u) with lateral displacement (d)

 $\Rightarrow$  u.d = f ( $\lambda$ ) taken from Lewis theory

angular distribution: both central part and tail slightly modified

#### Step limitations constraints - multiple scattering alone

#### Fano cavity response (fluctuation is switched off)

#### Comparison with release 7.1



'a la 7.1' : RangeFactor = 0.2

skin = 0: no single scattering at boundary no computation to linear distance to boundary



Release 8.2

#### Step limitations constraints - multiple scattering alone

#### Fano cavity response (fluctuation is switched off)

for Skin = 0 to 10



#### vs *Skin* for dRoverRange=0.2



#### Geant4 release 8-2-ref3 and Fano cavity

All modifications presented in this talk are implemented in release 8-2-ref3

Global effect are shown here:

Release 8.2 vs 8-2-ref3

MaxStepSize 1m / finalRange 10um - fanoCavity-msc-fluct ref2 vs ref3



RangeFactor = 0.02

GeomFactor = 3

linLossLimit = 1.e-06

skin = 1(in G4 9.0)



#### **Summary**

We analyzed the modifications of the Geant4 e- transport algorithms in the context of the Fano cavity setup.

Stability of the mean energy loss computation has been slighty improved (~2 per mille)

Model of energy loss fluctuations has been changed for very small amount of matter. Stability ~3 per mille over a large range of step size limitation

Multiple scattering model has been enhanced in various manners. Relevant features are:

strong constraints on step limitation single Coulomb scattering near boundaries

stability ~1.5 % for dRoverRange < 0.3

#### Additional comments

Need to be completed
understand the systematic shifts
study the effect of other paramaters

⇒ finalRange, stepMax, productionCut ...

Recommanded parameter values and options will be different for bioMedical requirements (highest precision) and HEP-calorimetry usage examples of Physics Lists

Fano cavity setup is included in our public test serie:

/geant4/examples/extended/medical/fanoCavity

see README

It is automatically executed by System Test Team before every release

#### Geant4 releases : v6 ⇒ v8

| • v6.2                                                        | June 2004                                             |
|---------------------------------------------------------------|-------------------------------------------------------|
| <ul><li>v7.0</li><li>v7.1</li></ul>                           | January 2005<br>June 2005                             |
| <ul><li>v8.0</li><li>v8.1</li><li>v8.2</li><li>v8.3</li></ul> | January 2006<br>June 2006<br>January 2007<br>May 2007 |
| • v9.0                                                        | June 2007 ?                                           |

## Backup slides

#### Energy transfer coefficient





$$\mu_{tr}(E_{\gamma}) = \frac{1}{E_{\gamma}} \int_{T_{min}}^{T_{max}} \frac{d\sigma_{tot}}{dT} T dT = \sigma_{tot}(E_{\gamma}) \frac{\langle T \rangle}{E_{\gamma}}$$

 $\sigma_{tot}$ : total cross section per volume

T: kinetic energy of emited  $e^{-}$ 

$$\left(\frac{\mu_{tr}(1.25 \text{ MeV})}{\rho}\right)_{water} = 0.02998 \text{ cm}^2/\text{g}$$

#### From TestEm14:

#### Step limitation from continuous energy loss

 The cross sections depend on the energy. The step size must be small enough to ensure a small fraction of energy loss along the step:

$$\frac{\text{step}}{\text{Range(E)}} \le \frac{d\text{RoverRange}}{d\text{RoverRange}} \begin{cases} 1 \text{ in G4 v6. and v7.} \\ 0.2 \text{ elsewhere} \end{cases}$$

This constraint must be relaxed when E → 0



#### Step limitation competition





#### Sampling calorimeter: cut dependance





#### beyond 8.1: single scattering and effective facrange





no big change, but slightly faster anyway

### fanoCavity example: finalRange

