

Validation of Geant4 Hadronic Generators vs Thin Target Data

Outline

- Motivation
- Models validated
- Data Used
- Validation results
- New validation framework
- □ Summary

MC 2010, Tokyo October 2010 Dennis Wright (slides prepared by Sunanda Banerjee on behalf of Geant4 Hadronic Working Group)

Motivation

- Geant4 provides a large number of models to describe hadronic interactions over the entire energy spectrum
 - Quark-gluon string models which are valid for high energy interactions (E > 10 GeV): QGS, FTF
 - Cascade models to describe medium to low energy interactions (E: 1-10 GeV): Bertini, Binary
 - Precompound and de-excitation model for low energy interactions: Preco
 - Parametrized models describing broad energy domains: LEP, HEP
- It is essential to find the range of application of these models.
- Validation of physics models is an integral part of commissioning the models in Geant4 applications and is done by comparing their predictions with published thin target data.

Physics List

- Since none of the models within Geant4 could explain all physics processes, it is customary to register several physics processes in a list.
 - EM processes are usually valid over the entire energy domain with each process described separately, e.g., pair production, Compton scattering, ...
 - Hadronic processes are valid over a finite energy domain. Two models may have validity over an overlapping energy region
- LHC experiments have chosen QGSP_BERT physics list as the default physics list
 - Uses Bertini, LEP, QGSP for π^{\pm} , K and p/n
 - LEP/HEP (GHEISHA) for all others

Models Validated

- We have compared data with the predictions of several models using Geant4 version 9.3.p01
- **Primary set:**
 - QGS: Quark gluon string model and is intended for incident energy above 12 GeV
 - Bertini Cascade: Bertini intra-nuclear cascade model intended for incident energy below 9 GeV
 - LEP: Low energy parametrized model derived from GHEISHA and is intended for incident energies below 25 GeV
- □ Auxiliary set:
 - Binary Cascade: An intra-nuclear cascade model intended for incident energy below 5 GeV
 - CHIPS: Quark level event generator based on Chiral Invariant phase space model (works at all energies)
 - FTF: Fritiof model implementation intended for incident energy above 4 GeV
- □ The limits are results of validations and compromises
- □ In recent validation with LHC calorimeters, it was found that existing physics lists ought to be improved in the energy range 5-25 GeV. So some of the models are tested beyond their validity range

Data from Saturne (S. Leary et al.); GSI Synchrotron (C. Villagrasa-Canton et al.)

- **Double differential cross section for neutron production**
- □ Isotope production
- Data Set from ITEP: (Yu. D. Bayukov et.al.,)
- Measurements exist for Lorentz invariant differential cross section as a function of kinetic energy at some fixed angles
- □ Inclusive p and n production at 4-29 different angles in 8-9 kinetic energy bins in $p/\pi^+/\pi^-$ -nucleus collision (12 targets from Be to U) with beam momenta of 1-9 GeV/c
- □ Statistical errors 1-10% and systematic uncertainties 5-6%
- Data from HARP experiment: (M.G. Catanesi et al.)
- Double differential distribution of inclusive pion production at large (0.35 2.15 rad) and forward (0.03 – 0.21 rad) with proton, π[±] beam between 3-15 GeV/c for a number of nuclear targets from Be to Pb
- □ Authors quote statistical errors 1-10% and systematic uncertainties ~ 10%
- Data set from BNL E-802: (T. Abbott et al.)
- Inclusive π[±], K[±] and proton production from p beams at 14.6 GeV/c on a variety of nuclear targets (Be ... Au)
- Quantities measured are Lorentz invariant differential cross sections as a function of transverse mass (m_T) in bins of rapidity (y)

Data quality: statistical error 5-30%: systematic uncertainty 10-15% October 2010

Geant 4 Neutron production in p+Fe at 0.8 GeV

The cascade models and in particular Binary (and Liege, a cascade model from that origin) describe the data rather well at all angles October 2010

Geant 4 Isotope Production in p+Fe at 0.75 GeV

GSI

Three cascade models, BIC (binary cascade with multifragmentation model on), BERT (Bertini Cascade) and BIC_ion (binary cascade model with multi-frgmentation off) are compared.

- Bertini and FTF provide the best agreement
- LEP over-estimates at high energy and has poor agreement at low energy
- CHIPS over-estimates at high energies
- Binary good only in the forward hemisphere Validation of Geant4 Hadronic Generators

- Bertini OK in forward hemisphere; over-estimates in the backward
- LEP is OK only at high energy
- CHIPS and Binary predictions are below the data
- □ FTF-Preco provides the best prediction at 5 GeV/c Validation of Geant4 Hadronic Generators

Inclusive n in π^{-} -A collisions

CHIPS cannot provide reasonable agreement for heavy targets

- Binary predicts smaller cross section
- FTF-Preco predicts smaller cross section for soft neutrons
 Validation of Geant4 Hadronic Generators

October 2010

Geant 4 orward Production of π^{\pm} in π -C collisions

Geant 4 orward Production of π^+ in p-Al collision

- QGS-Binary, Bertini, FTF-Preco give reasonable description of the data
- QGS/Preco predicts larger cross section while Binary provides a much broader spectrum

October 2010

Validation of Geant4 Hadronic Generators

 \Box FTF is good for at large y values and under-predicts at small y, large m_T

- □ LEP predicts smaller cross sections
- □ CHIPS provides reasonable agreement for y values above 1.5
- Bertini gives a fair description of the data October 2010

Validation Framework

- Results from validation are of high interest to the user community:
 - how good is the agreement with experimental data
 - how is the modeling software evolving/improving
- BUT !!! Current access and exposure of results is rather "non-uniform"
- Develop a validation framework
 - improve the consistency of the tests
 - completion of tests on definite timescale
 - access to the results in the central location
 - share the tools and resources
 - share the comparison reference
 - track history as the hadronic models evolve

The first versions for storage and publication of results have been implemented

First Implementation

□ Validation results are stored in a database under a central server

□ A web application is deployed to store and display results

Geant 4							Download User Forum Gallery Site Index Contact Us Search Geant4		
me - Results & Publications - Physics Validation	and Verificat	lon							
Home Validation 0	Validation Overview		<u>netic</u>	<u>Hadronic</u>	Exp	<u>pert</u>	List of H	IAD Tests	
Name of the Test: test4	7]	List of had	Ironic Tests	
Responsible: Suna	Sunanda Banerjee, J. Yarba (Fermilab)								
Description: Inter	Intermediate energy validation is done by comparing Monte Carlo predictions vs experimental data.						Hadrcap		
		·····		-	19	-	Ndata		
				Geant4 Version: 9.2.ref08					
		Observable: In	clusive m_T spectrum	1			test30		
		Reaction: p-	-Cu->pi- +X				test35	<u> </u>	
						-1	test45	·	
Test Conditio	Test Conditions		Results				test47	*	
Name	Description						9.2.ref08		
Target	Copper	O+d Bt	$u \rightarrow \pi + X \text{ at } 14.$ (9.3.b01)	.6 GeV (y = 2.10)			C		
Particle	р	§10	(V09-02-0	8)	<u> </u>				
Energy	14.6 GeV/c				-				
Bertini Cascade Version	9.3.b01			~	1				
Bertini Cascade Version	V09-02-05	-		23					
Bertini Cascade Version	V09-02-08	1 I I							
	y=2.1		C.A.S. C.A.S.	1]					
Score:	passed								
гуре:	lexpert								
		10 ⁻¹	2 0.3 0.4 0.4	5 0.6 0.7 0.8 Reduced m _T	0.9 (GeV)				

Summary

- Geant4 provides a large number of models for hadronic physics each valid over a certain energy domain for a number of incident particles. These models are put together in a physics list to satisfy a given application domain
- Models are continuously improved over the years, with new features and new models being added
- Models are validated against data obtained from thin target experiments as well as from thick targets and calorimeters
 - Bertini cascade model gives good overall description of data below 9 GeV. However for low-A nuclei, it under-estimates production of proton/neutron in the backward hemisphere
 - Improved version of FTF model gives good overall description of data above 5 GeV. It has some deficiency in predicting inclusive proton and neutron production for heavier targets at energies below 5 GeV
- □ The FTFP_BERT physics list based on FTF and Bertini is currently being validated by LHC experiments and show promising results.
- A validation framework is being developed to keep track of results from all the comparisons