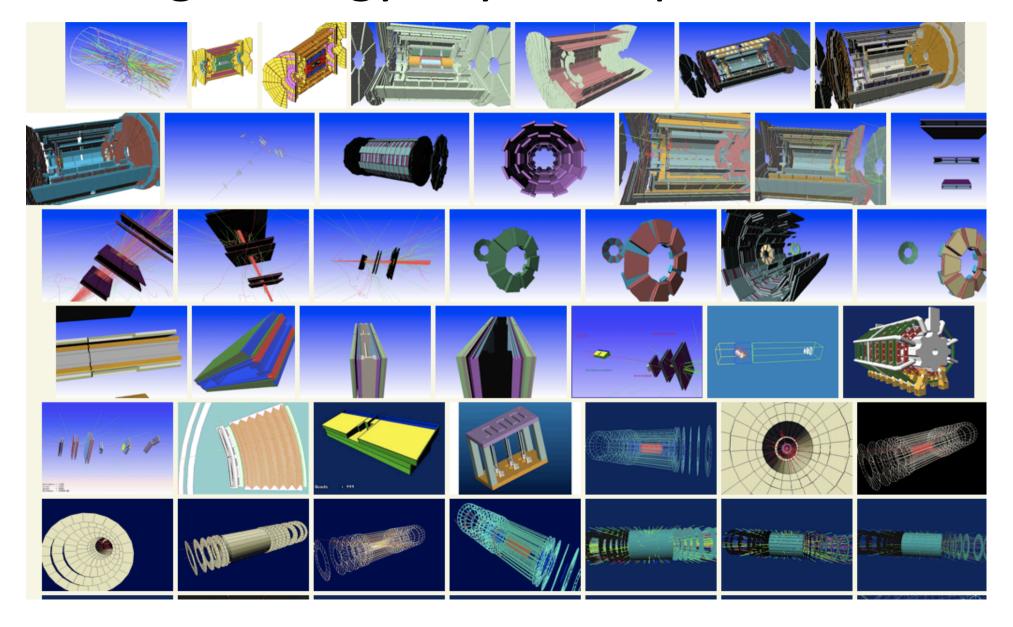
The Geant4 Toolkit: Evolution and Status

John Apostolakis & Makoto Asai for the Geant4 Collaboration

Outline

- Geant4 introduction and Application Areas
- New kernel capabilities
- Physics model improvement, tuning
 - EM Physics new models
 - Hadronic Physics model improvement
- Computing Performance and Multi-core
- In each case, only highlights are shown
 - These slides can be found at http://bit.ly/g4mc2010

Geant4 Introduction

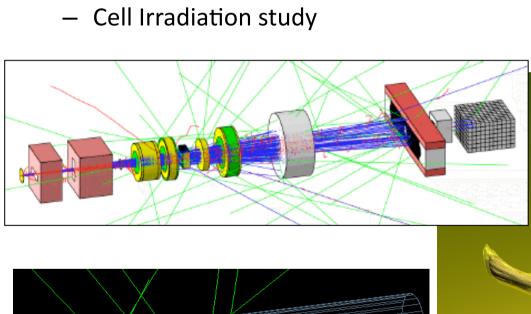

Application Domains

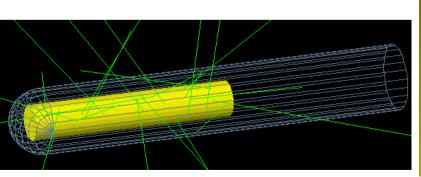
A tour of tools based on Geant4

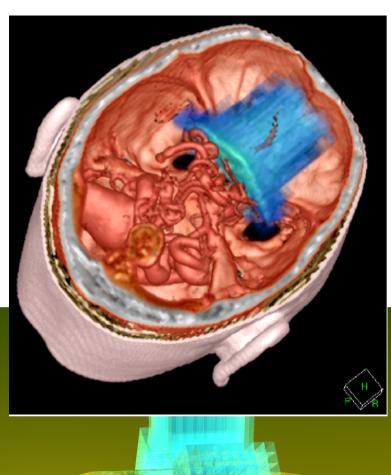
Geant4 toolkit on one slide

- Mature, extensible kernel
 - Powerful geometry modeler, E/B fields, track stacking
- Diverse set Physics models (mostly 2 alternatives)
 - e-/e+/gamma 10s eV to TeV
 - Hadron-nucleus interactions up to 1 TeV
 - Neutron interactions from thermal to 1 TeV
 - Ion-ion interaction from 100s MeV/n to 10 GeV/n
 - Optical, weak (decay of unstable and radioactivity)
- Tools for input, output, visualization, scripting
- Every increasing use
 - Over 2000 citations for G4 NIMA paper (2003)
- Product of collaboration of 90 contributors
 - Effort: HEP (75%), Biology/medical (15-20%), space (5-10%).
- Open Source: Distributed via web. G4 license since 2006.

High Energy Physics Experiments




Space: radiation effects, science



Geant4 @ Medical Science

- Four major use cases
 - Beam therapy
 - Brachytherapy
 - Imaging

Application Areas

- Established as the leading tool for the simulation of detector response for High Energy Physics (HEP) experiments
 - Used at ATLAS, CMS and LHCb as the production simulation (the fourth large LHC experiment is preparing to use it in production)
 - Used in a large number of smaller experiments, in nuclear physics, dark matter searches, ..
- Widely used in medical applications
 - Radiotherapy (external and brachytherapy)
 - Medical imaging
- Space
 - Satellite electronics radiation assessment
 - Planetary science applications.

Tools based on Geant4 (sample)

Medical physics

- GATE
 - Tomography/dosimetry*
 - Widely used, cited.
- Tools for radiotherapy
 - PTSim
 - Hadrontherapy
 - GAMOS

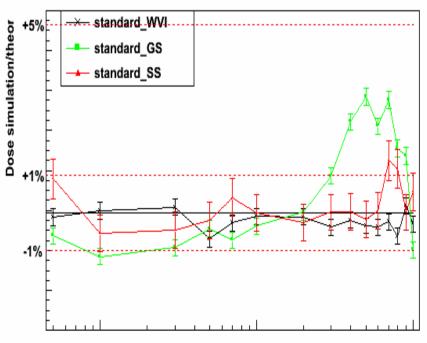
Each is presented in E5 (Wed)

Accelerator beamline:

- G4BEAMLINE
- BDS-SIM
 Medical phys., accelerators

- HEP: "Version1" of Detectors
 - SLIC
- Space radiation and environment tools
 - GRAS (radiation analysis)
 - Planetocosmics (planet environment),
 - SPENVIS
 - <u>CRÈME-MC</u>
 - MULASSIS (shielding)
 HEP, Space

Geant4 Physics

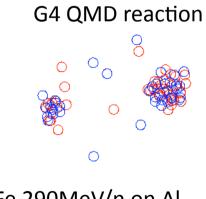

A lightning update

EM Physics Multiple Scattering

- Many model refinements
 - See EM talk*
- Converged on unified design for EM models
 - Anyone can combine models for a process
 - Choosing 'best' of lowE and Standard packages.
- Validation extended
 - Suite of 15 tests and over 200 thin-target cases
 - Regular regression cross-checks for EM calorimeter performance

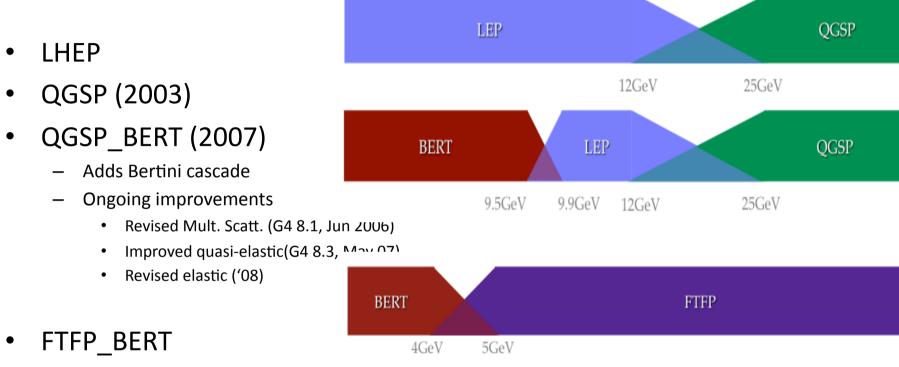
*Talk by V. Ivantchenko (Session I2, Wednesday 16⁰⁰-18³⁰)

- Improvement of MS
 - New step limitation
 - Greater stability
- Benchmarking <u>PBM</u> paper
- Models tuned for e-, p, μ


Hadronic Physics

- FTF, CHIPS models improved, extended
 - FTF now works down to 3 GeV (overlap with cascade), improved and retuned
 - Details in talk of V. Uzhinskiy (moved to J2 Thursday)
 - CHIPS: new model for hadron-nucleus interactions.
- Bertini cascade: improved pion cross-sections
 - Poster PB #16
- Improvement in elastic, quasi-elastic interactions
 - New quasi-elastic at high energy (CHIPS for QGS, FTF)
 - Improved cross sections for elastic scattering
- Improved Pre-compound / de-excitation
 - Precompound: revised cross-sections, transition
 - SMM corrections (from original authors)
 - Mix simple and GEM evaporation
 - Details is talk of J.M. Quesada (previous talk- was J2 session)

Overview of G4 Hadronic Improvements: D. Wright, J2 Thur.


Ion-ion interactions

- 'Previous', older models
 - Binary light-ion cascade (BLIC)
 - E<10 GeV/A; projectiles: C or lighter
 - Abrasion / ablation
- New Interface to DPMJET 2.5
 - Created for space applications (funded by ESA)
- New native QMD model (G4QMD)
 - Borrows from JQMD
 - nucleus creation method and potential
 - Uses scatterer of Binary cascade
 - See talk by T. Koi (J1 earlier)

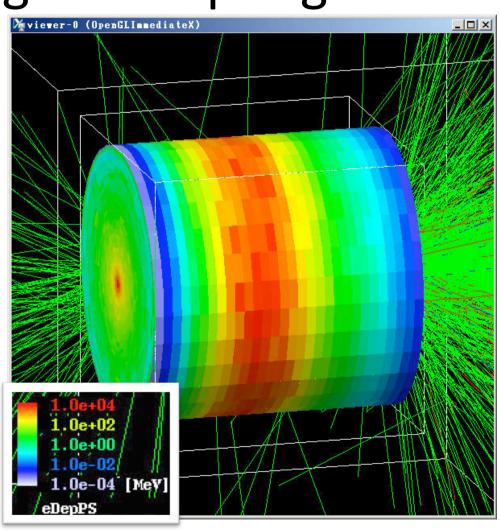
Fe 290MeV/n on Al

Example of evolution of production physics lists

- FTF extension down to 3 GeV (2009)
- Is not the leading alternative to QGSP_BERT

Production physics lists for HEP Applications

Kernel developments

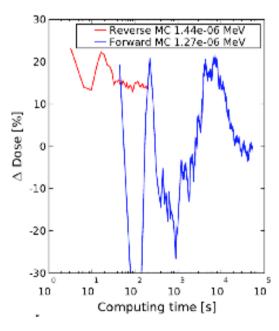

Improved 'parallel' geometries
New scoring, via UI commands
Propagating tracks back in time

Parallel geometries

- Joint navigation in two or more geometries
 - Step is limited by first boundary found
 - Replaces & extends earlier case-by-case abilities (1998, 2003)
- Many uses in toolkit already
 - Materials ('mass' geometry) used for physics
 - Scoring / tallying
 - Importance biasing and weight window
 - Shower parameterization (and other fast simulation)
- Engineered flexible framework open to additional uses
 - By developers of tools, advanced applications

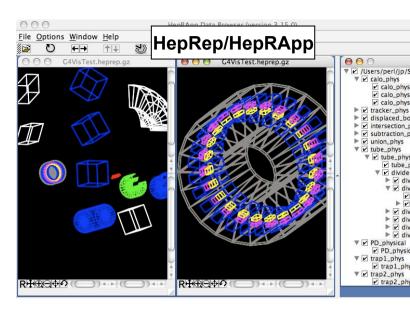
New Scoring via scripting

- Scoring redesigned,
 - Tallies for does, energy deposition, fluence, ...
- Driven by interactive commands or scripts:
 - Start/stop of scoring
 - Choice of quantities
 - Location, orientation of meshes
- Uses parallel geometry capability
- Scoring via user-defined hits is still possible

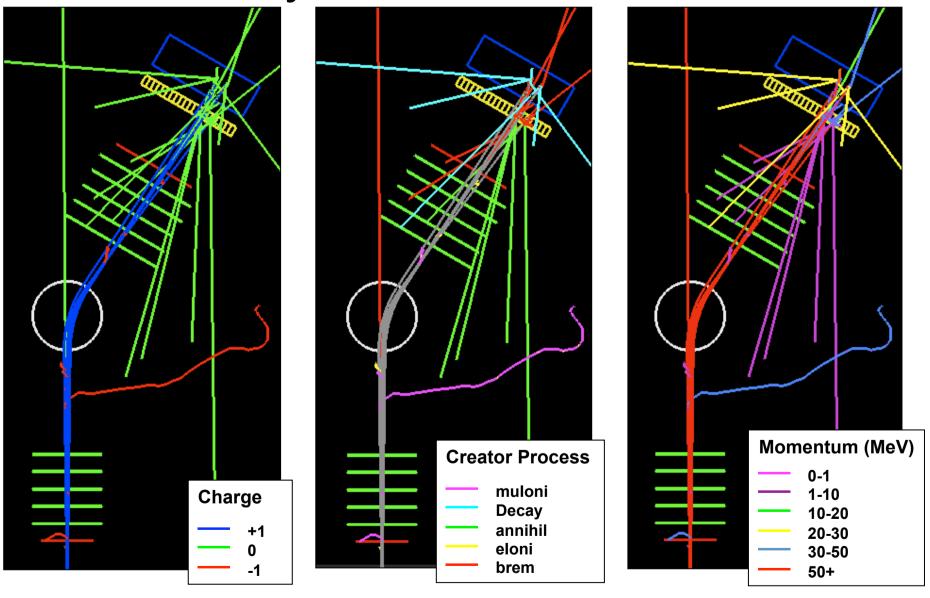


Reverse Monte Carlo

- Tracks e-/gamma/proton back in time
 - from sensitive target volume
 - to an extended source(s).
- Adjoint MC*
 - Continuous gain of energy
 - Multiple scattering
 - Discrete ionisation, bremsstrahlung, Comp photo-electric
- Test cases show 5-15% accuracy
 - 100-500 faster for small target.
- Alternative, 'simple' reversal
 - With propagation of error matrices
 - For track reconstruction (HEP).


*Thanks to Tom Jordan

Results for electron exp(-E/2MeV) spectrum



Other toolkit elements

- Expanded visualisation
 - Trajectories "a-la-carte"
 - Hooks to track attributes
- Interactive/GUI-driven environment
 - to explore detector, hits
 - Choice of simple (OpenGL) or full featured interface
 - Joint Qt driver for viz/UI
- Input of geometry description from CAD
 - Tools to translate to GDML, tesselated solids
 - Commercial FASTrad tool (from TRAD)

Trajectories 'a-la-carte'

Computing Performance

"Driving" Applications
Improvements
Multi-core

Computing Performance - Context

Computing performance is a significant issue for many communities of users

- Big HEP experiments make large productions
 - Running on 10k CPUs many months each year
- Medical dose estimation need turnaround time
 - accuracy needs => significant statistics
 - use complicated geometries (CT)
- Few sacrifices in physics modeling accepted
 - Need the 'best' physics modeling
 - In addition to "as-fast-as-possible" computation
- Backdrop: hardware is now many-core computers

Performance Improvement

- Measured measure CPU time & number of memory allocation
 - Tools: standard (valgrind, perfmon2) and custom (igprof, FAST)
 - Undertaken in close collaboration with key user communities
- Eliminated hotspots and frequent causes memory allocation. :
 - Improvements in Bertini cascade (30%), EM Low Energy (25%), step integration in magnetic field (15%), geometry (5-10%).
 - Several improvements (not all) relevant for typical use cases.
- Eased the cost of improved physics modeling in large scale productions (e.g. use of Bertini cascade in HEP.)
 - Afterwards the CPU-time cost has returned to the cost with older versions of the simpler, less precise modeling
 - e.g. parameterised models for E<~18 GeV, as in QGSP physics list

Improvements for voxel geometries

- Navigation in a regular grid of voxels is greatly improved
 - No longer is there a penalty of large memory use.
- New option to ignore boundaries between voxels with the same material and density
 - Real speedups for new "Regular" navigation
 - e.g. of 4 in CT-scan test case with 57 "materials" by skipping boundaries (vs previous 'Nested' method).
 - P. Arce IEEE/NSS 2008
- Alternative methods of gluing volume in GATE

CPU TIME SPENT ON TRACKING 1000 GEANTINGS

Vx 1-D	Vx 3-D	Nest	Reg(4)	Reg(57)	Reg(500)	Reg(no)
2030	1.98	1.62	0.30	0.40	0.74	1.45

Parallelism and multi-core

Older efforts / New era

- Distributed-memory Parallel Geant4 (v1=2000)
 - ParGeant4 developed and released (2002) - joint output
- New issue: reduce memory use
 - Multi-process/copy-on-write
 - 70 MB extra/worker (vs. baseline 250MB)
 - Multi-threading
 - Big task not in original design

Multi-thread prototype

- Developed prototype multithreaded Geant4
 - shares the physics tables and geometry
 - 20MB added per thread
 - 95% efficiency on 32 cores,
 - Bottlenecks fixed in memory allocation, creation of new ion.
- Today's Challenge:
 - Whether/how to incorporate into code repository.

Summary

- Several Physics model improvements
 - EM physics from 10s eV to TeV
 - Hadron-nucleus models up to TeVs.
- Improved Computing Performance
 - Multi-core alternatives investigated
- IMPACT Very wide use in diverse fields
 - Many tools based on G4 for diverse fields
 - Over 2000 citations for G4 NIMA paper (2003)
- Flexibility, Open Source enable many uses