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Geant4 Electromagnetic Physics 

 Used for many years for  
production by large HEP 
experiments
◦ BaBar,
◦ ATLAS, CMS, LHCb,..

 Many common 
requirements for HEP, 
space, medical and other 
applications

 EM web page (common 
for Standard and Low-
energy working groups):
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http://cern.ch/geant4/collaboration/working_groups/electromagnetic/index.shtml

http://cern.ch/geant4/collaboration/working_groups/electromagnetic/index.shtml�


Geant4 EM packages 

 Standard
◦ γ, e± up to 100 TeV
◦ hadrons up to 100 TeV
◦ ions up to 100 TeV

 Muons
◦ up to 1 PeV
◦ Energy loss propagator

 Xrays
◦ X-ray and optical photon 

production processes
 High-energy

◦ Processes at high energy 
(E>10GeV)

◦ Physics for exotic particles
 Polarisation

◦ Simulation of polarized 
beams

 Optical
◦ Optical photon interactions

 Adjoint
◦ New sub-library for reverse Monte 

Carlo simulation from the 
detector of interest back to source 
of radiation

 Utils – general EM interfaces

 Low-energy
◦ Livermore LPDL and EEDL data

γ, e- from 250 eV up to 1 GeV
◦ Livermore LPDL data based 

polarized processes
◦ PENELOPE code rewritten in 

C++, γ, e- , e+ from 250 eV up to 1 
GeV

◦ hadrons and ions up to 1 GeV
◦ Microdosimetry (Geant4-DNA 

project) from 7 eV to 10 MeV
◦ Atomic deexcitation
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Unification of standard and low-
energy sub-packages
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Why Unification of EM Physics?
 Standard EM developments was concentrated on 

HEP and  in a great part to LHC experiment
◦ LHC experiments are successfully taking and analyzing 

data now
◦ Standard EM package and Physics Lists did not use low-

energy models
 For many years EM low-energy sub-package was 

developed separately 
◦ Focused on medical and space science requirements

 The were many recommendation extend Geant4 
EM physics using the best features of both packages

 Migration to common design for the low-energy 
package have been done for Geant4 9.3 
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Main Benefits of the Unification

 Possible to combine low-energy and high-energy 
models 

 Number of long-stand issues of the low-energy 
package were fixed by migration

 CPU performance of the low-energy package was 
slightly improved

 User interfaces were improved 
 Easy access to cross sections and stopping 

powers is provided
 New model developments were facilitated
 All EM components can use any new features 

from Geant4 kernel in more easy way
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Spline method for interpolation of stopping powers and 
ranges improving accuracy of proton transport in Lead
Automatically available to all EM processes

G4 9.2

G4 9.2

G4 9.3

G4 9.3

7 points per decade
EM default

20 points per decade
EM option3, low-energy
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Electron Low-energy Ionisation  

 Electron CSDA range vs NIST

 Ionisation in liquid water

 Non-migrated and migrated Livermore and Penelope alternatives

 Wrong computation below 1 MeV is fixed by migration to the new design 

 Geant4 9.2 ref 04ww
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Geant4 EM Physics Design
J.Apostolakis et al., Rad. Phys. Chem.  78 (2009) 859 

 Geant4 physics is implemented via G4VProcess interface
 EM processes are implemented via 3 base classes, which responsible 

for all management functions and interaction with Geant4 kernel:
◦ G4VEnergyLossProcess
◦ G4VEmProcess
◦ G4VMultipleScattering
◦ All concrete processes inherit from one of these interfaces

 EM process may have one or many models for energy range and 
geometry region following G4VEmModel interface
◦ Only implementation of physics:
 Cross section and stopping power computation
 Sampling of final state

 Alternative models allowing flexible construction of optimal physics 
per use-case

 Consolidation of EM design provides more possibilities for validation 
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Geant4 EM photon models validation
G.A.P. Cirrone et al., NIMA 618 (2010) 315–322

 Systematic validation of cross-sections for 
electromagnetic photon models of migrated models
 Standard, Livermore, Penelope models (Geant4 9.3)
 Photoelectric, Compton, gamma conversion, Rayleigh models
 EDPL97, SANDIA, NIST data libraries
20 October 2010 Geant4 EM physics 11



Electron ranges Geant4 (9.3beta) 
versus NIST ESTAR data

 Penelope results are more 
close to NIST 
◦ the difference <5% in the 

energy range 0.1 MeV – 1 GeV
◦ except for Pb below 0.1 MeV, 

where EM standard is best

0.95

0.97

0.99

1.01

1.03

0.01 0.1 1 10 100 1000

E (MeV)

R C
SD

A,
G4

 / R
CS

DA
,N

IS
T

Standard

Livermore

Penelope

0.95

0.97

0.99

1.01

1.03

0.01 0.1 1 10 100 1000

E (MeV)

R C
SD

A,
G4

 / R
CS

DA
,N

IST

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0.01 0.1 1 10 100 1000

E (MeV)

R C
SD

A,G
4 / R

CS
DA

,NI
ST

Water

Pb

Al

20 October 2010 12Geant4 EM physics



Overview of recent model 
developments
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New bremsstrahlung models
V.Ivanchenko et al., PoS (ACAT2008) 108 
A.Schaelicke et al., in proceedings of NSS IEEE 2008 

 Bethe-Heitler formula 
with corrections

 Complete screening with 
Coulomb correction
◦ Valid for E > 1 GeV

 Density & LPM-Effect
◦ consistent combination 

a’laTer-Mikaelian

 Hadron
bremsstrahlung for 
LHC experiments 

LPM old

LPM new

LPM off

Data from the CERN experiment: H.D.Hansen et al, PR D 69, 032001 (2004)

149 GeV e- at Cu target (4%X0)



Multiple scattering development
L..Urban, CERN-OPEN-2006-077

 The model of multiple scattering of L.Urban
is main default for long time up to now

 Provides accurate simulation for LHC and 
other HEP applications

 Flexible step limitation algorithm applicable 
for tracking in field 

 Include parameterisations for central part of 
and tail of scattering angle
◦ This providing CPU effective computations
◦ Limitation overall accuracy
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Backscattering simulation with 
L.Urban model (Geant4 9.3)
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Electron Energy and Charge Albedos
SANDIA Report SAND80-0573 (1984)
Electron energy 0.1 – 1 MeV



Multiple scattering developments
J. Phys: Conf. Ser. 219 (2010) 032045

 There are natural limitations of the accuracy of 
the L.Urban model
◦ Parameterisations versus available data on electrons 

scattering
◦ Optimisation of CPU performance for HEP 

applications 
 Geant4 design allowing to have alternative models
◦ Specialisation per particle type and use-case 

 Recently number of new models become 
available:
◦ Goudsmit-Saunderson – fully theory based (e±)
◦ Single Coulomb scattering model and WentzelVI

multiple scattering (µ±, hadrons)
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Goudsmit-Saunderson Model
O.Kadri et al., NIM B267 (2009) 3624

 Angular distribution from Goudsmit-Saunderson
theory 
◦ Thanks to F.Salvat provided ELSEPA code

 Lewis moments and displacement sampling 
according EGSnrc prescriptions
◦ Thanks to I.Kawrakov

 Step limitation and path length corrections from 
L.Urban model

 The goal of the model is achieve maximum 
precision for electron transport
◦ It is still significantly slower than the L.Urban model 

(about factor 2)
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Recent Fano Cavity Validation 
Results (Geant4 9.4beta)

 Dependence of ionisation dose inside the cavity demonstrates 
precision of MeV electron transport 
◦ S.Elles et al., J. Phys: Conf.  Ser.  102 (2008) 012009
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WentzelVI model
 Is much more simple but fully theory based
◦ Wentzel differential cross section with mass, spin 

and form-factor corrections

 Dynamically (depending on momentum) the 
angular limit for single scattering is selected
◦ May be applied for transportation in vacuum or 

low-density media
◦ Has original step limitation

 Can be used together with hadron elastic 
scattering for HEP applications 
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MuScat test results for 9.4beta
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Recent improvements of ion 
transport in Geant4
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Validation of ICRU 73-based ion model in Geant4
A. Lechner et al., NIM B268 (2010) 2343 

 Validation of 12C Bragg peak simulation in water and polyethylene (90-400 
MeV/amu) for G4ionIonisation process

 Experimental Bragg peak position can be reproduced within 0.2% of ion 
range in case of water, and within 0.9% in case of polyethylene.

See paper for details. Experimental data 
by courtesy of D. Schardt and U. Weber.
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Validation of 12C CSDA Ranges in Elemental 
Media and Compounds 

 Results:
 Calculation of absorber thickness (tsim) required in the simulation to achieve 

the same residual CSDA range in water as in the experiment.

 Figures: Percentage difference of tsim and t in elemental (left) and compound 
(right) targets. 
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Upgrade of user interfaces
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EM Physics List Constructors for HEP
 Main user interface – version for g4 9.3 described below 
 Used by Geant4 validation suites 
◦ Are robust due to intensive tests by Geant4 team
◦ well known precision and limitations

 Providing several alternatives focused to different application domain 

Constructor Components Comments

G4EmStandardPhysics Default 
(QGSP_BERT, FTFP_BERT…)

ATLAS, LHCb and 
other HEP productions, 
other applications

G4EmStandardPhysics_option1 Fast due to simple step limitation, 
cuts used by photon processes 
(QGSP_BERT_EMV, …)

CMS production, good 
for crystals not good 
for sampling  EM 
calorimeters

G4EmStandardPhysics_option2 Experimental:WentzelVI model of 
multiple scattering (QBBC, …)

Used for testing of new 
models
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Combined EM Physics List Constructors
 Are available after migration to common EM design (g4 9.3) 
 For today focus more to precision than to maximum simulation speed
 Ion stopping model based on the ICRU’73 data
 Step limitation for multiple scattering using distance to boundary
 Strong step limitation by the ionisation process defined per particle type 
 Recommended for hadron/ion therapy, space applications  

Constructor Components Comments

G4EmStandardPhysics_option3 Urban MSC model
(QGSP_BIC_EMY, Shielding)

Proton/ion therapy

G4EmLivermorePhysics GodsmitSaunderson MSC model
Livermore models for γ, e- below 1 GeV, 
Standard models above 1 GeV

Livermore low-energy 
electron and gamma 
transport

G4EmPenelopePhysics GodsmitSaunderson MSC model
Livermore models for γ, e± below 1 GeV, 
Standard models above 1 GeV

Penelope low-energy 
e± and gamma 
transport
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Optional EM Constructors
 G4EmLivermorePolarizedPhysics
◦ Polarisation in gamma processes

 G4EmExtraPhysics:
◦ G4SynchrotronRadiation by default disabled, may 

be enabled via UI command
◦ Gamma and electro nuclear physics by CHIPS

 G4OpticalPhysics
◦ includes all optical processes 

 G4EmDNAPhysics
◦ Include very low-energy processes for liquid 

water
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User Interfaces and Helper Classes

 G4EmCalculator – easy access to cross 
sections and stopping powers (TestEm0)

 G4EmProcessOptions – c++ interface to 
EM options alternative to UI commands

 G4EmSaturation – Birks effect
 G4ElectronIonPair – sampling of 

ionisation clusters in gaseous or silicon 
detectors

 G4EmConfigurator – add models per 
energy range and geometry region
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DNA Models per G4Region

 Standard EM physics 
constructor as a base

 G4EmConfigurator is 
used to add DNA 
models

 DNA models are 
enabled only in the 
small G4Region for 
energy below 10 MeV

 CPU performance 
optimisation
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Summary
 Unification of Geant4 EM physics was 

achieved for the version 9.3 
 An improved approach for high energy 

bremsstrahlung has been implemented
 Multiple scattering model specialisation per 

particle type and use-case is achieved 
 New model for ion ionisation based on 

ICRU73 report is available
 Accuracy of 1% is achieved for range of carbon ions 

 Physics constructors combining standard and 
low-energy models are available since 
Geant4 9.3
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