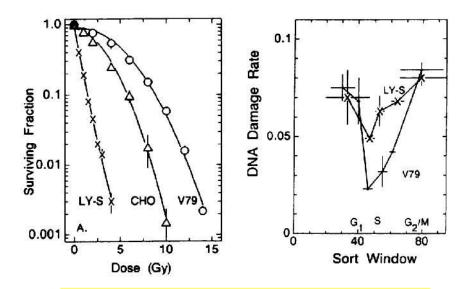
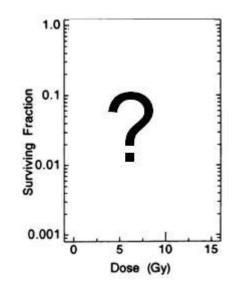
Modeling Radiation Chemistry and Biology in the Geant4 Toolkit


A. Mantero on behalf of the Geant4-DNA consortium

MC2010, Tokyo

Context & motivation

Modeling radiation biology


Experimental data

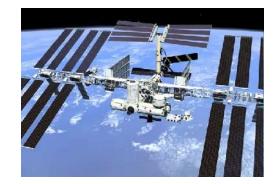
Source :

« DNA Double-Strand Breaks Measured in Individual Cells Subjected to Gel Electrophoresis », Olive, Wlodek, Banath 1991

Simulation results at cellular and sub-cellular scale

Forerunner codes : PARTRAC, RADACK, CPA100 ...

Modeling radiation biology


Today validated simulation tools are of primary importance for radioprotection Not only in the low dose regime (< ~200 mSv) •"nuclear" workers (nuclear plants, health-care, particle accelerators) •general public (radon, medical exams...)

But also at high doses

new therapeutic techniques based on ionising radiation (ion therapy)
long duration manned space exploration missions (ISS, Mars...)

Biological effects can only be extrapolated from epidemiological surveys (Hiroshima and Nagasaki bombings)

Modeling radiation biology

Several specialized Monte Carlo codes have been developed for "<u>track structure</u>" modeling of ionizing radiation at the molecular scale.

Traditionally these codes are not open source are not publicly distributed

We have adopted an alternative approach based on Geant4 : <u>open-source</u>, done for general purpose

Table I - Monte Carlo Track Codes in Radiation Research.

Code	Author	Medium	Particle	Energy Range	ref
ETRAN	Berger & Seltzer	all	e & phot	10 keV - 1 GeV	[1]
EGS4	Nelson	all	e ⁻ & phot	10 keV - 1 GeV	[2]
PTRAN	Berger	H ₂ O	proton	50 - 250 MeV	[3]
MCNP	Briemeister	all	neutron	eV-MeV	[4]
PENELOP	E Salvat	all	e– & e+	1keV-100MeV	[5]
PREGRIN	E Hartmann Siantar	tissue	phot. & e-	Therapy beam	[6]

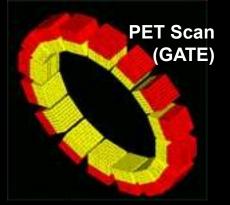
Table II - Monte Carlo Track Codes in Radiation Biology.

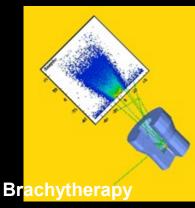
Code	Author	Medium	Particle	Energy Range	Ref
ATRACK	Katz et al	all	e & ions	up to GeV	[7]
MOCA8	Paretzke	H ₂ O (v, I)	e-	10 eV - 100 keV	181
OREC	Turner et al	ILO (I)	c-	10 eV - 1 MeV	[9]
		8 7 8080	p&a	0.3 = 4 MeV/u	
STBRGEN	Chatterjee & Holley	H ₂ O (1)	e-	0.1 - 2 keV	[10]
		65	ions	0.3 - GeV	
CPA100	Terrissol	$H_2O(1)$	e-	10 eV - 100 keV	111
DELTA	Zaider & Brenner	ILO (v.l)	c	10 eV - 10 keV	[12]
		-	р&а	0.3 = 4 MeV/u	
ETRACK	Ito	$H_{2}O(v)$	e	10 eV - 10 keV	[13]
TRION	Lappa et al	$H_{2}O(v,l)$	e-	10 eV - 1MeV	[14]
			p & a	0.3 - 4 MeV/u	
KURBUC	Uehara & Nikjoo	$H_0O(v)$	e-	10 eV = 10 MeV	[15]
TRACEL	Tomita et al	H,O (v, 1)	e-	10 eV - 1 MeV	[16]
PARTRACK	Paretzke ct al	II,0 (v. 1)	ions	0.3 - GeV	[17]
MOCA14	Wilson & Paretzke	$H_2O(v)$	р&а	0.3 - 4 MeV/u	[18]
PITS	Wilson & Nikjoo	Biological	Ions	0.3 - GeV MeV/u	[19]
LEPHIST	Uehara & Nikjoo	H _o O	Р	lkeV-1MeV	[20]

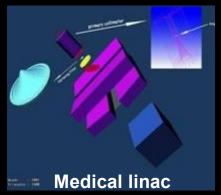
Source : "Monte Carlo track structure for radiation biology and space applications", Nikjoo et al., 2000

The Geant4 Monte Carlo toolkit

The Geant4 toolkit:


GEometry ANd Tracking


- Libraries to simulate interactions of particles with matter
- Initiated by CERN in 1994 for HEP (LHC)
- Successor of Geant3 (20 years)
- R&D 1994-1998, 1st release in December 1998
- International collaboration (~100 members)
- Object-Oriented technology (C++)
- Constantly updated
- Entirely open source and free
- Two públic releases / year
- Flexible geometry
- Interaction processes (electromagnetic, hadronic)
- Follow intial and secondary particles within the geometry
- Save physics quantities and analyze them
- Visualization
- Interactivity
- Extensibility



http://www.geant4.org

Earth magnetosphere Geant 4 **GLAST/FERMI** (NASA) GAIA (\cdot) **DICOM** dosimetry **Physics-Biology** Ĩ. ISS Hadrontherapy

The Geant4-DNA project

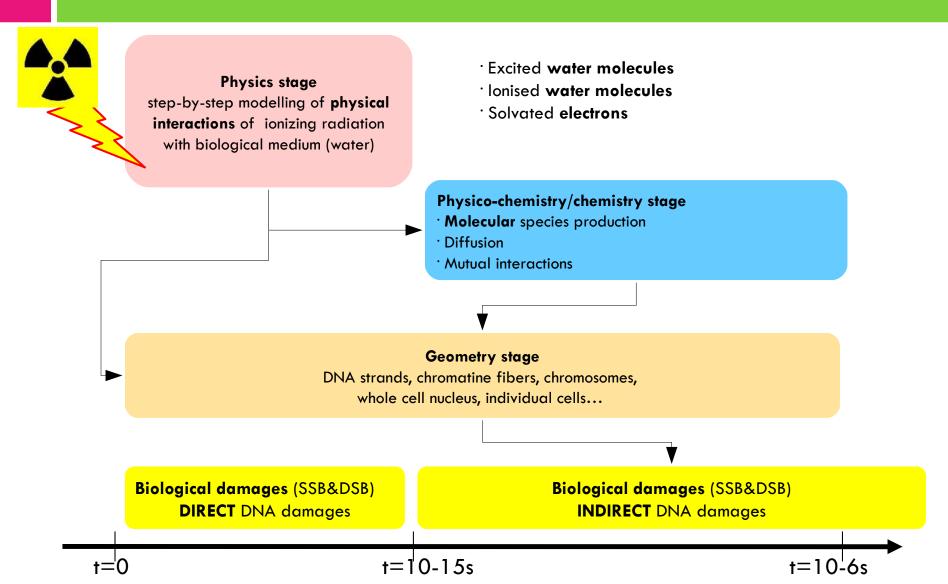
The Geant4-DNA project :

Geant4 for nanodosimetry in biological medium

Objective : **adapt** the general purpose **Geant4** Monte Carlo toolkit for the simulation of **interactions of radiation with** <u>**biological systems at the**</u> <u>**cellular and DNA level**</u>

2001: initiated by Dr Petteri Nieminen at the ESA

• Delivered work package reports and a user requirement document


2004: design and implementation

- First Physics models were added to Geant4 in late **2007** for the discrete modelling of light particle interactions down to the eV scale
- Chemistry developments started end of 2009

Currently an on-going interdiciplinary activity

- Developed by the Geant4 low energy electromagnetic Physics working group.
- Coordinated by CNRS/IN2P3/CENBG since 2008

How can Geant4-DNA model radiation biology ?

Physics stage :

Physics models available in Geant4-DNA

• Can reach the eV limit

- 8.23 eV lower energy limit for excitation (by electrons)
- Compatible with molecular interactions
- •Applicable to liquid water only (for now...)
 - Purely discrete
 - Simulate all elementary interactions on an event-by-event basis
- No condensed history approximation

•Models can be purely **analytical and/or use interpolated data tables**

•Use the **same software design** as all electromagnetic models available in Geant4 (standard EM and low energy EM)


•Extension is on-going...

Physics stage : status of Physics models in Geant4 9.4

е	р	н	α , He+, He	C, O, Fe,
> 8.23 eV Screened Rutherford > 8.23 eV Champion	-	-	-	-
8.23 eV – 10 MeV Emfietzoglou	10 eV – 500 keV Miller Green 500 keV – 100 MeV Born	-	Effective charge scaling from same models as for proton	Ionisation ready but not delivered
-	100 eV – 10 MeV Dingfelder	<mark>100 eV – 10 MeV</mark> Dingfelder	improved	
11 eV – 1 MeV Born	100 eV – 500 keV Rudd 500 keV – 100 MeV Born	100 eV — 100 MeV Rudd improved	1 keV – 400 MeV	
0.025 – 100 eV				
4 – 13 eV		-		
	> 8.23 eV Screened Rutherford > 8.23 eV Champion 8.23 eV - 10 MeV Emfietzoglou - 11 eV - 1 MeV Born 0.025 - 100 eV	> 8.23 eV Screened Rutherford > 8.23 eV Champion 8.23 eV - 10 MeV Emfietzoglou 10 eV - 500 keV Miller Green 500 keV - 100 MeV Born 100 eV - 10 MeV Born 11 eV - 1 MeV Born 100 eV - 500 keV Rudd 500 keV - 100 MeV Born 0.025 - 100 eV	> 8.23 eV Screened Rutherford - > 8.23 eV - Champion 10 eV - 500 keV 8.23 eV - 10 MeV MeV 500 keV - 100 MeV Emfietzoglou 100 eV - 10 MeV I 100 eV - 10 MeV - Born 100 eV - 10 MeV I 100 eV - 500 keV Niller Green I 100 eV - 10 MeV Dingfelder I 100 eV - 100 MeV Nev Born 100 eV - 500 keV I 100 eV - 100 MeV Rudd Born 100 eV - 100 MeV Born 100 eV - 100 MeV Rudd 500 keV - 100 MeV Born 100 eV - 100 MeV	> 8.23 eV Screened Rutherford > 8.23 eV Champion10 eV - 500 keV Miller Green 500 keV - 100 MeV BornImage: Constant of the second

Radiation Chemistry

Modeling water radiolysis ?

Physico-chemical stage

Physico-chemistry

Dissociation: H2O^{*/+}- $(H3O^+, OH^-, e_{aa}, H, H2)$

Thermalization: products slow down to diffusion energy (cf. Kreipl et al, REB, 2009)

Ionised molecules convert into : H2O⁺ + H2O ► H3O⁺ + OH●

Excited molecules relax or dissociate

	Process	Decay channel	Fraction (%)
Ionisation (H ₂ O ⁺)			
1b ₁ , 3a ₁ , 1b ₂ , 2a ₁ , K	Dissociative decay	$H_3O^+ + \bullet OH$	100
Excitation (H ₂ O*)			
$A^{1}B^{1}$	Dissociative decay	$^{\bullet}OH + H^{\bullet}$	65
	Relaxation	$H_2O + \Delta E$	35
B^1A^1	Auto-ionisation	$H_3O^+ + {}^{\bullet}OH + e_{aq}^-$	55
	Dissociative decay	$H_2 + {}^{\bullet}O^{\bullet}$	15
	Relaxation	$H_2O + \Delta E$	30
Ryd, diff bands	Auto-ionisation	$H_3O^+ + {}^{\bullet}OH + e_{aq}^-$	50
	Relaxation	$H_2O + \Delta E$	50

(From Kreipl et al, Radiat Environ Biophys, 2009)

+=10-12c

t=10-15s

Chemistry stage

Physico-chemistry stage

Chemistry stage

Radiolytic species

- diffuse
- interact
 - amongst themselves
 - with the DNA

t=10-15s

t=10-12s

Chemistry stage

Physico-chemistry stage

Chemistry stage

Two models available in the literature:

- Step By Step (SBS)
 - Accurate
 - Resource usage
- Independent Reaction Time (IRT)
 - Faster
 - Accuracy?

Chemistry stage: Step By Step Model

Physico-chemistry stage

Chemistry stage

Step by step model

1.Check if molecules are "close enough" to react

2.Reactions (if any)

3.Make one diffusion step for all the molecules, go to point 1

t=10-15s

t=10-12s

Step By Step model: Interaction Process

Chemistry stage

Step by step model

1.Check if molecules are "close enough" to react

2.Reactions (if any)

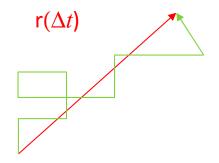
3.Make one diffusion step for all the molecules, go to point 1

r < the reaction range R ?NO

Step by Step model: Diffusion process

Chemistry stage

Step by step model


1.Check if molecules are "close enough" to react

2.Reactions (if any)

3.Make one diffusion step for all the molecules, go to point 1

Physics: in a given interval of observation Δt we have a succession of different steps

Geant4: A molecule "jumps" for a calculated distance in a random direction

t=10-12s

Step by Step model: Diffusion process

Chemistry stage

Step by step model

1.Check if molecules are "close enough" to react

2.Reactions (if any)

3.Make one diffusion step for all the molecules, go to point 1

To calculate $r(\Delta t)$ (i.e. step size) we need:

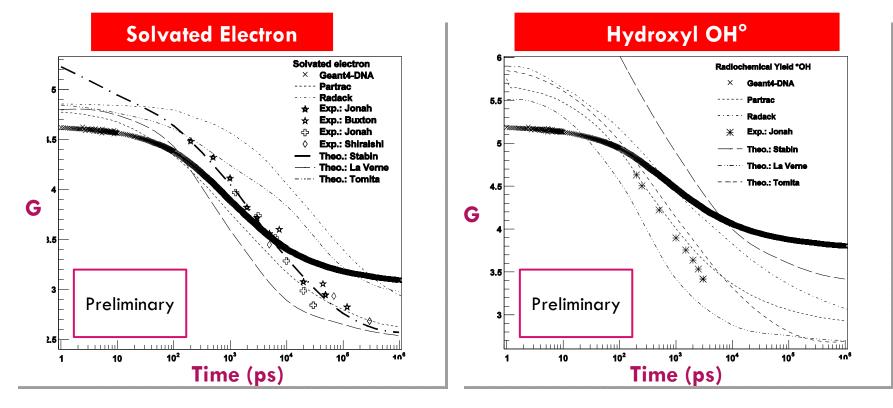
- Δt
- D(mol), the diffusion coefficient

Following this formula:

$$\sqrt{\langle r^2 \rangle} = \sqrt{2 D \Delta t}$$

t=10-12s

Step by Step model: PARTRAC approach


The time step is used to calculate the space step. How to define the

- ∆t = <u>User defin</u> approach (Krei
- ∆t =Minimum <u>encounter</u> → *F* (Michalik et al, Research,1998
- ∆t = Time enc computed fron approach

calculate the	Time interval (s)	Δt (ps)
	Until 1.0×10^{-11}	0.1
	1.0×10^{-11} - 1.0×10^{-10}	1
		3
		10
A STATE OF		100
the second		
	*	$D \ (\times 10^{-9} \ \mathrm{m^2 \ s^{-1}})$
		4.9
		2.8
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7.0
		9.0
	A CARLON	4.8
A last	2	5.0
A CARLE	and the second sec	2.3

G values against time

G : **radiochemical yield** for a given species (number of molecules created for 100 eV of deposit energy)

Incident particle : e- 750 keV

Expected developments

Physics:

- add complementary/additional theoretical models
- other incident particles (C, O, ...)
- other target materials (DNA, ...)
- down to the sub-eV range
- allowing the simulation of direct DNA damages

Chemistry :

- Implement new models of diffusion & interaction :
 the Independent Reaction Time (IRT) model → fast model of diffusion and interaction
 - Implement a multithread approach

Cellular and sub-cellular geometries :

- model realistic geometries down to the DNA scale following two approaches
- atomistic approach
- voxellized approach (phantoms)
- biological damage prediction -SSBs, DSBs (using geometry)

Comparison to experimental measurements:

For water radiolysis validation : LRad, CEA, Saclay, France, G. Baldacchino For cellular irradiation : microbeam irradiation facility at CENBG

Conclusion

Geant4-DNA Chemistry status :

Molecular mechanisms have been implemented in G4:

- Molecules
- Decay process and product thermalization
- Diffusion
- Molecular interaction

Two years for completion, verification and validation of the code (expected delivery end **2012**)

Open source package of Geant4

Thank you For your attention

Where to find more information

Geant4-DNA :

Internet & recent publications

Geant4 web site

Low Energy Electromagnetic Physics Working group page www.geant4.org

Geant4-DNA: ESA / AO6041 project geant4.in2p3.fr

Molecular scale track structure simulations in liquid water using the Geant4-DNA Monte-Carlo processes Z. Francis *et al.*, Applied Radiation and Isotopes (2010) (link)

Comparison of GEANT4 very low energy cross section models with experimental data in water, S. Incerti *et al.*, Med. Phys. 37 (2010) 4692-4708 (link)

The Geant4-DNA project S. Incerti *et al.*, Int. J. Model. Simul. Sci. Comput. 1, (2010) 157–178 (link)

A free-parameter theoretical model for describing the electron elastic scattering in water in the Geant4 toolkit C. Champion *et al.*, Rad. Phys. Chem. 78 (2009) 745-750 (link)