The neutron_hp neutron transport code.

J.P. Wellisch CERN/PH

Models for neutron interaction and thermalization.

- Neutron_hp sampling codes for ENDF/B-VI derived data formats are completely generic.
- Simulate the cross-sections and interactions of neutrons with kinetic energies below 20 MeV down to thermal energies.
- The upper limit is set only by the evaluated data libraries the code is based on.
- I consider elastic scattering, fission, capture and inelastic scattering as separate models

The neutron_hp transport models

neutron_hp models and cross-sections:
 Uses the unix file-system to ensure granular and transparent access/usage of data sets.
 More than 10^11 events run.
 Uses point-wise cross-sections
 no artifacts due to multi-group structure.

Low energy neutron data: G4N(DL0.2, 3.7

Are granular selections of data from (alphabetic)
Brond 2.1
CENDL 2.2
EFF-3
ENDF/B (VI.0, VI.1, VI.5)
ENSDF
FENDL/E2.0
JEF 2.2
JENDL (3.1, 3.2, FF; 3.3 currently under study)
MENDL-2(P)

Large parts of the initial (0.2) selection is guided by the FENDL-2

G4NDL0.2 for non-thermal application

Example of data driven modeling: neutron capture, and isotope production isotopes produced by neutrons on 28Si ALZ8 MG25 (ba වු දු0.15 0.4 2 entrieez 2002 0.3 0.1 0.2 3000 0.05 0,1 2500 0 â ٥. 25 50 75 100 0 25 50 75 100 2000 E, MeVI E,, [MeV] arr [barn] کینیزی a_{was} [barn] 7.0 1500 MG24 AL27 0.8 1000 0.8 0.15 500 0.4 0.1 0 o 0.1 0.2 0.3 0.4 0.5 0.B 0.7 0.6 0.9 0.2 E_{de} DMeVJ 0.05 entriesz 0 n 0 25 5D 75 100 0 25 50 75 100 E, MeVI E, [MeV] 700 50,02 MG27 SI27 ₿0.06 600 6 0.015 500 0.D4 400 0.01 Truk Bluy 0.D2 300 0.005 200 D. n 50 100 0 25 75 0 25 50 75 100 100 E, Dievi E, [MeV] D 2.5 1.5 2 З 3.5 4 4.5 E_{ee}DMeVI Figure 48: Isotope production cross-sections for neutron induced production of important isotopes as simulated J.P. wemsch, using the isotope-production code in GEANT4. Large points are simulation results, small points are evaluated data **CERN/PH** from the MENDL2 data library.

Doppler broadening

Does exact doppler broadening on the fly, based on OK data

- No pre-formatting of data to fixed temperatures, and easy simulation of set-ups with mixed temperatures.
- Adds the doppler bias to the nuclear momentum distribution
- Point one is to the best of my knowledge not possible with any other transport code.

Doppler broadening

The doppler bias illustrated for Carbon

Elastic scattering

Two representations of the differential cross section are supported

Tabulation as a function of the cosine of the scattering angle and incident neutron energy

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\cos\theta, E_n)$

Legendre polynomial expansion

$$\frac{2\pi}{\sigma(E)}\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\cos\theta, E_n) = \sum_{l=0}^{n_l} \frac{2l+1}{2} a_l(E) P_l(\cos(\theta))$$

Elastic scattering

Radiative Capture

Described using
 Photon multiplicities or photon production cross sections.
 Discrete and continuous contributions to the photon energy spectrum.
 Photon angular distributions.

Radiative Capture (2)

Multiplicity representations
 Full transition probability array.
 Or tabulation of the multiplicity for each discrete line and a continuum contribution

For the continuum contribution, we write the normalized emission probability as:

$$f(E \to E') = \sum_{i} p_i(E)g_i(E \to E')$$

Cross section representations
 Tabulation only.

Low energy neutron capture

Fission

I include first, second, third, and fourth chance fission.
 Neutron yields are tabulated as a function of incident and outgoing neutron energies
 Angular distributions are either tabulated, or represented as a Legendre polynomial expansion.

If angular distributions are missing, isotropic distributions are assumed.

Fission (2)

Six representations are available for neutron energy spectra General evaporation spectrum $f(E \to E') = f(E', \Theta(E))$ Maxwell spectrum $f(E \to E') \propto \sqrt{E'} e^{E'/\Theta(E)}$ Evaporation spectrum $f(E \to E') \propto E' e^{E'/\Theta(E)}$ Watt spectrum $f(E \to E') \propto e^{E'/a(E)} \sinh \sqrt{b(E)E'}$

Fission (3)

■ Madland Nix Spectrum $f(E \to E') \propto \frac{1}{2} [g(E', \langle K_1 \rangle) + g(E', \langle K_h \rangle)]$ ■ Where $g(E', \langle K \rangle) = \frac{1}{3\sqrt{\langle K \rangle \Theta}} [u_2^{3/2} E_1(u_2) - u_1^{3/2} E_1(u_1) + \gamma(3/2, u_2) - \gamma(3/2, u_1)]$ ■ E₁ is the exponential integral, and $u_1(E', \langle K \rangle) = \frac{(\sqrt{E'} - \sqrt{\langle K \rangle})^2}{\Theta}$ $u_2(E', \langle K \rangle) = \frac{(\sqrt{E'} + \sqrt{\langle K \rangle})^2}{\Theta}$

Fission simulation

Inelastic scattering

The following channels are currently included:

n'(γ_{δ}), np, nd, nt, n³He, n α , nd2 α , nt2 α , n2p, n2 α , np α , n3 α , 2n, 2np, 2nd, 2n α , 2n2 α , nX, 3n, 3np, 3n α , 4n, p, pd, p α , 2p, d, d α , d2 α , dt, t, t2 α , ³He, α , 2 α , and 3 α .

Photons that may be associated to the individual channels are described as in the case of capture.

Neutron induced isotope production

Isotope production

Summary

I have provided a neutron code suitable for a wide range of neutron transport problems.

Future improvements will focus on details of the thermal scattering law, and the unresolved resonance region.