Implementing the Bertini Intra-Nuclear-Cascade in the Geant4 Hadronic Framework

Aatos Heikkinen aatos.heikkinen@cern.ch

Helsinki Institute of Physics

Outline

- Bertini intra-nuclear models
- Implementation in the Geant4 Hadronic Framework
- Physics validation
- Examples of functionality
- Latest model modifications and extensions

Introduction

Intra-nuclear cascade (INC) implementations such as HETC ¹ have traditionally a wide range of applications in

- shielding,
- dose estimation,
- hadronic treatment planning,
- hadron calorimetry ² and
- transmutation of nuclear waste materials.

¹R. G. Alsmiller, Jr., F. S. Alsmiller and O. W. Hermann, "The High-energy Transport Code HETC88 and comparisons with experimental data," *Nucl. Instr. and Meth. A*, **295**, pp. 337-343 (1990).

²J. E. Brau, "Simulation of Hadronic Showers and," *Nucl. Instr. and Meth. A*, **312**, pp. 483-514 (1992).

Introduction

Recently a renewed interest towards INC has been stimulated by

- Accelerator Driven Systems and
- spallation neutron sources.

Examples of this development are improvements in Liége INC model ¹ and hadron-nucleus event generator validations made by EDDA Collaboration ²

¹A. Boudard et al., "Improvements of Intra-Nuclear Cascade Models Stimulated by Recent Spallation Data," *INPC 2001 AIP Conference Proceedings,* Berkeley, California (USA), 30 July – 3 August, Vol 610(1), pp. 300-304 (2002).

²K. Ackerstaff et al., "A Hadron-nucleus Collision Event Generator for Simulations at Intermediate Energies," *Nucl. Instr. and Meth. A*, **491**, pp. 492-506 (2002).

Introduction

Geant4 toolkit offers

- comprehensive range of tools for model developer,
- as well as tested functionality for simulating the passage of particles through matter.
- A general INC framework is provided.

Large number of various hadronic models are available¹,

- from fully parametric models, such as GHEISHA code²,
- to highly theoretically driven models, such as CHIPS³.

³P. V. Degtyarenko, M. V. Kossov and H.-P. Wellisch, "Chiral Invariant Phase Space Event Generator," *The European Physical Journal A*, **9**, pp. 411-420 (2000).

¹N. Amelin, "Physics and Algorithms of the Hadronic Monte-Carlo Even Generators," *CERN/IT/99/6*, CERN (1999).

²H. Fesefeldt, "The Simulation of Hadronic Showers, Physics and Applications," *Report PITHA 85/02*, Aachen (1985).

The intra-nuclear cascade model developed by Bertini solves on the average the Boltzmann equation.

We present here an implementation of this classic INC model.

In inelastic particle-nucleus collisions

- a fast phase $(10^{-23} 10^{-22} \text{ s})$ of INC results in a highly exited nucleus, and is followed
- by fission and
- pre-equilibrium emission;
- a slower $(10^{-18} 10^{-16})$ s) compound nucleus phase follows with
- evaporation.

The Bertini nuclear model consist of a

- three-region approximation to the continuously changing density distribution of nuclear matter.
- Relativistic kinematics is applied throughout the cascade and
- the cascade is stopped when all the particles, which can escape the nucleus, have done so.

Pauli exclusion principle

- is taken into account and
- conformity with the energy conservation law is checked.

¹A. S. Iljinov, M. V. Kazarnovsky and E. Ya. Paryev, *Intermediate-energy Nuclear Physics*, CRC Press, Boca Raton, Florida (USA). (1994).

- Path lengths of nucleons in the nucleus
 - are sampled according to the local density and
 - free nucleon-nucleon cross-sections.
- Angles after collisions are sampled from experimental differential cross-sections.
- Tabulated total reaction cross-sections are calculated by Letaw's formulation¹.

¹S. Pearlstein, "Medium-energy Nuclear Data Libraries. A Case Study, Neutron and Proton -induced Reactions in ⁵⁶Fe," *The Astropysical Journal*, **346**, pp. 1049-1060 (1989).

Models included¹ are

- Bertini INC model with exitons,
- pre-equilibrium model,
- nucleus explosion model,
- fission model, and
- evaporation model.

Intermediate energy nuclear reactions up to 10 GeV energy are treated for

- proton, neutron,
- pions, (kaons in preparation)
- photon, and nuclear isotopes.

¹A. Heikkinen and N. Stepanov, "Bertini Intra-nuclear Cascade Implementation in Geant4," *Proceedings of CHEP03, nucl-th0306008*, La Jolla, California, 24–28 March, (2003).

For pion the INC cross-sections are provided to treat elastic collisions and inelastic channels:

- $\pi^- \mathbf{n} \rightarrow \pi^0 \mathbf{n}$
- $\pi^0 p \rightarrow \pi^+ n$
- $\pi^0 \mathbf{n} \to \pi^- \mathbf{p}$.

Multiple particle production and following s-wave pion absorption channels are implemented:

- π^+ nn \rightarrow pn
- π^+ pn \rightarrow pp
- π^0 nn \rightarrow X
- π^0 pn \rightarrow pn
- $\pi^0 pp \rightarrow pp$
- π^- nn $\rightarrow X$
- π^- pn \rightarrow nn
- π^- pp \rightarrow pn.

Geant4 hadronic shower framework¹ follow the Russian dolls approach to implement framework design.

- Hierarchy of frameworks encapsulate the common logic of a particular use-case.
- Hadronics Level 4 framework allows concrete implementation of INC.
- Implementers of concrete intra-nuclear transport code need to use G4VIntraNuclearTransportModel.

¹J. P. Wellisch, "Hadronic Shower Models in Geant4 – the Frameworks", *Comput. Phys.*

Commun., 140, pp. 65-75 (2001).

Following the coding guidelines provided by the hadronic framework,

- Bertini cascade model interface class G4CascadeInterface inherits from G4VIntraNuclearTransportModel and
- implements hadronic final state generator with more than 35 classes.

Responsibilities of key classes in Geant4 Bertini cascade implementation.

Responsibility	Class name	Note
Interface	G4CascadeInterface	Implements INC framework.
Colliding particles	G4ElementaryParticleCollider	
Sub-model management	G4InuclCollider	
Nuclei model	G4InuclNuclei	
INC model	G4IntraNucleiCascader	Actual Bertini cascade treatmen
Exiton model	G4NonEquilibriumEvaporator	Integrated with INC model.
Explosion model	G4BigBanger	
Fission model	G4Fissioner	Uses G4FissionConfiguration.
Evaporation model	G4EquilibriumEvaporator	Full de-exitation of nuclei.

Unified Modeling Language diagram demonstrating relationships between key classes in Geant4 Bertini cascade implementation.

With the use of

- object oriented technology and
- layered framework design

we achieve a transparency of the physics.

Clear separation of the physics models allow

- critical analysis,
- development, and
- extendibility

of models behind various components of the particle emission.

The implementation provides some practical tools,

- such as classes G4WatcherGun and
- G4Analyser

for validating the physics results of INC models.

Latest release is now found to be stable.

(After some memory leak code fixes.)

Cascade code is provided for user in *Typical HEP experiment* -category physics lists.

Models are also available from LHC Computing Grid project (LCG) framework¹.

Optimized Geant4 physics lists (Release PACK 2.4) for high energy physics use contains Bertini cascade in physics lists

- LHEP_BERT,
- LHEP_BERT_HP and
- QGSP_BERT.

¹J. Beringer, "(p, xn) Production Cross Sections: A Benchmark Study for the Validation of Hadronic Physics Simulation at LHC," *CERN-LCGAPP-2003-18*, CERN (2004).

Physics Validation

To validate Bertini isotope production physics performance, we have made extensive Geant4 simulations on proton-induced reactions in Pb and Au targets¹.

¹A. Heikkinen and T. Linden, "Validation of the GEANT4 Bertini Cascade model and data analysis using the Parallel ROOT Facility on a Linux cluster", *Proceedings of CHEP04*, Interlaken, Switzerland, 27th September - 1st October, (2004).

Physics Validation

Isotope production from p(1 GeV) + 208 Pb collisions with Geant4 Bertini intra-nuclear cascade models.

The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World, Chattanooga, Tennessee, April 17-21, 2005 – p.17/19

Physics Validation

Bertini cascade has also been validated in various different fields by several authors:

- BaBar (pion production studies)¹
- Major validation effort in high energy physics community is done by LCG Simulation Validation Project².
- Geant4 hadronic performance for instrumentation in HEP³ and in space science and medical applications⁴ are also estimated.

- ¹D. H. Wright, "Using Geant4 in the BaBar Simulation," *SLAC-PUB-9862* (2003).
- ²J. Beringer, "(p, xn) Production Cross Sections: A Benchmark Study for the Validation of Hadronic Physics Simulation at LHC", *CERN-LCGAPP-2003-18*, CERN (2004).
- ³V. N. Ivanchenko, "Geant4: Physics Potential for HEP Instrumentation," *Nucl. Instr. and Meth. A*, **494**, pp. 514-519 (2002).
- ⁴V. N. Ivanchenko, "Geant4: Physics Potential for Instrumentation in Space and Medicine," *Nucl. Instr. and Meth. A*, **525**, pp. 402-405 (2004).

Conclusions

After extensive benchmarking of the INC physics and sub-models

- Bertini cascade is now reasonably well validated up to 10 GeV incident energy and
- users from various fields are using it successfully.

Currently we are extending Bertini models

- to treat new particles, such as incident kaons and lambdas;
- also, we plan to add optional interfaces to various sub-models,
 (such as elastic treatment), that are already available in current implementation.