

Space environment and effects analysis for ESA missions

<u>G.Santin*</u> for the Space Environments and Effects Section – TEC-EES ESA / ESTEC

* RHEA Ltd

9th Topical Seminar on Innovative Particle and Radiation Detectors 23 - 26 May 2004 Siena, Italy

The European Space Agency

- ESA is an intergovernmental organisation with a mission to provide and promote, for exclusively peaceful purposes:
 - space science, research and technology
 - space applications
- About 90% of ESA's budget is spent on contracts with European industry, mainly for research and development
- ESA purpose is to:
 - Improve competitiveness of European industry
 - Conduct cost-effective research and development, and operations
- http://www.esa.int

2

The European Space Agency: Members and Programmes

15 member states

- Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Norway, The Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom
- Greece and Luxembourg are expected to become members of ESA in 2004
- Cooperation agreements with Canada and Hungary
- ESA / EU Framework Agreement
 - The two organisations share a joint European strategy for space and together are developing a European space policy.

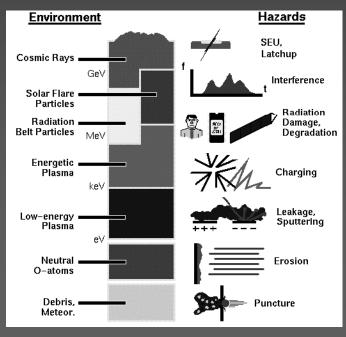
Budget

- Mandatory and optional activities
- €2700 million in 2003 invested on the basis of geographical return

ESA programmes:

- Earth observation
- Micro gravity research
- Telecommunications
- Launcher development
- Navigation
- Manned space flight

ESTEC European Space Research and Technology Centre

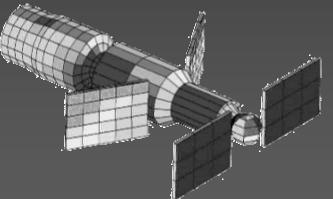

- ESA sites:
 - HQ, ESOC, EAC, ESRIN, ESTEC
- ESTEC (Noordwijk, The Netherlands)
 - ESA's largest establishment (~1000 staff)
 - Principal functions:
 - project management
 - future studies
 - space science
 - conception & management of ESA's space technology programme
 - provision of technical expertise and laboratory facilities
 - spacecraft testing
- http://www.estec.esa.int

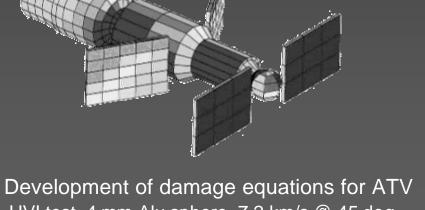
ESA Space Environments and Effects section – TEC-EES

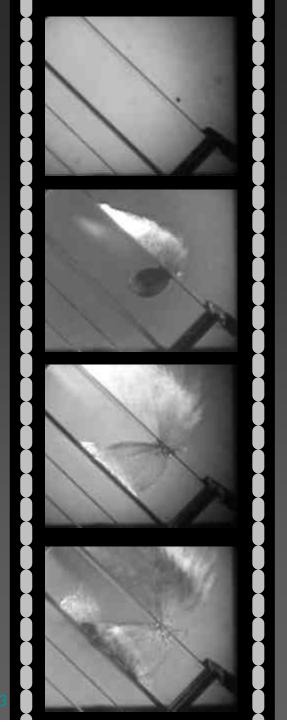
- Provides technical support to ESA programmes in the area of space environments and effects
 - Meteoroids and space debris
 - Atmosphere modelling
 - Radiation in space
 - Space weather
 - Spacecraft plasma interactions

- Project support
 - Before mission
 - Space Env. Specifications
 - Long term forecast
 - During mission
 - Specs. Update
 - Special actions
 - During or Post mission
 - Past space env. determination for detailed analysis

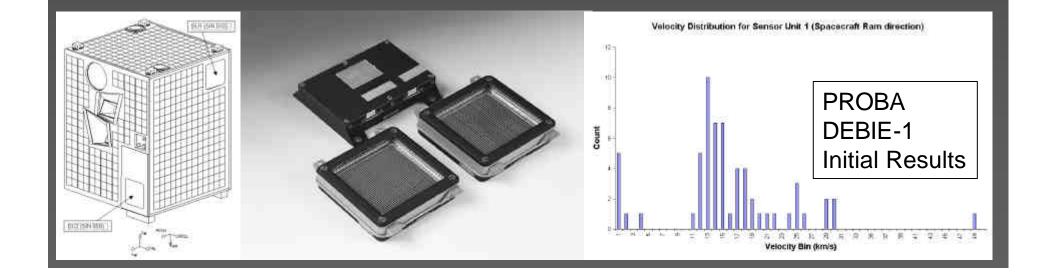
Meteoroids and Space Debris


- Man-made space debris and natural micrometeoroid particles
 - can damage satellites and
 - constitute a serious hazard to manned space flight
- Evaluating space debris and micrometeoroid size and velocity
 - analyzing their effects
 - designing efficient shielding
- Main areas covered:
 - Impact risk assessment
 - In-situ detectors
 - Analysis of retrieved hardware


6

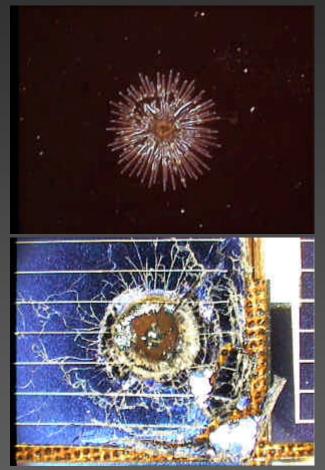

Meteoroids/Space Debris Mission support

- Specification of fluxes for given mission
- Simplified analysis
 - Fluxes only
 - Random plate
 - Damage assessment for fixed impact direction and velocity using simple damage equation
- Full 3-D analysis using ESABASE/DEBRIS


- Ex: Development of damage equations for ATV
 - HVI test, 4 mm Alu sphere, 7.2 km/s @ 45 deg. bumper=1.2 mm, backwall=3.3 mm, S=49.5 mm

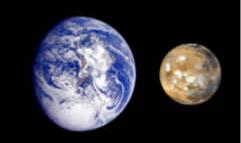
Meteoroids/Space Debris In-Orbit Data

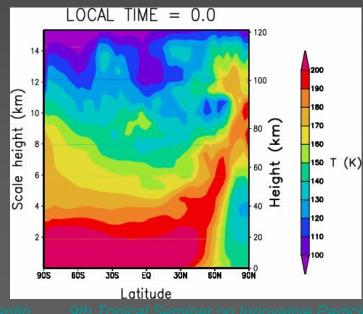
- Space debris is tracked by radar down to about 10 cm in LEO and 1 m in GEO
- Dedicated radar or optical measurements can go down to 0.5 1 cm in LEO and 15 – 20 cm in GEO
- Information on smaller particles (which are the most abundant by far) can only be obtained by:
 - In-situ detectors (ESA: GORID in GEO, DEBIE in LEO
 - Analysis of retrieved hardware (ESA: Eureca, HST solar arrays)
- DEBris In orbit Evaluator (DEBIE)
 - 2 Sensor Units (opening 10cm x 10 cm)

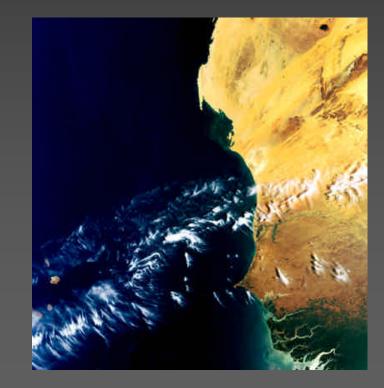


Meteoroids/Space Debris retrieved hardware

HST Solar Array Stiffener Material Feature size: 2 mm

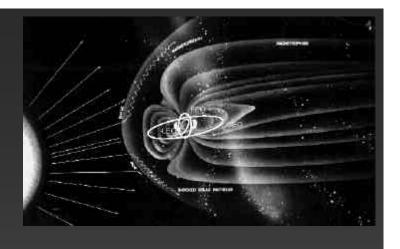

- HST Post-Flight Impact studies
 - Global survey of all surfaces for impact features.
 - Photographic recording of all craters larger than 3.7 mm
 - Recording of smaller craters (down to microns sizes) for selected areas.
 - Chemical analysis of crater residues to distinguish meteoroids from debris.
 - Data analysis and establishment of database
 - Validation of flux models.

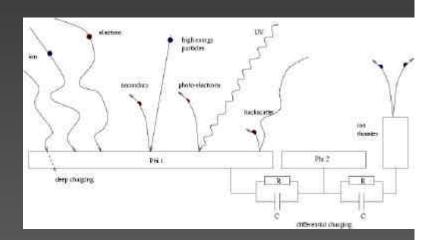



HST Solar Cell Impact from front side Crater size: 3.5 mm Hole size: 0.8 mm

Atmosphere(s) modeling

- Global Circulation Models (GCM) for moons and planets (Earth, Mars, ...)
- Ground and atmospheric environments and effects on detectors (e.g., scattering coefficients).
- Model based Martian Climate Database
 - Continuously improved
 - http://www-mars.lmd.jussieu.fr/

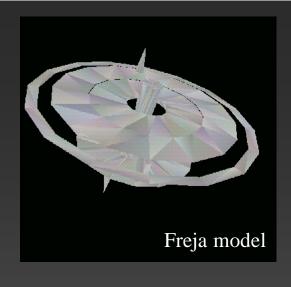




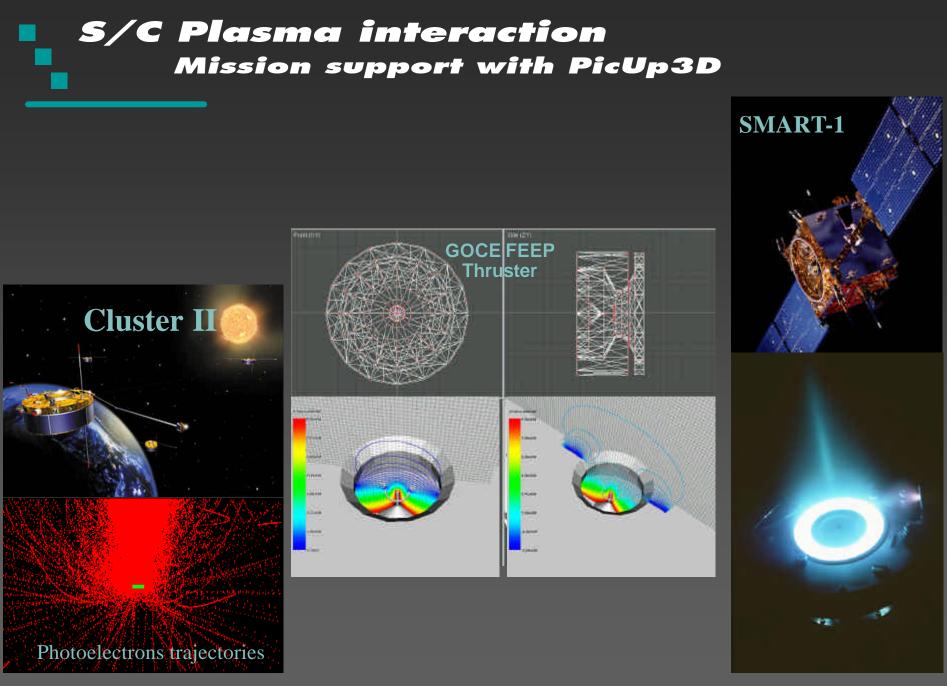
Spacecraft plasma interactions

Plasma environments

- At high altitudes and in polar orbits result in electrostatic charging of spacecraft surfaces
- At low altitude cause leakage of power from exposed solar arrays and electromagnetic perturbations
- Disturbance of scientific measurements
- Surface damage or electronic disturbance
- Shortcut of high voltage system
- Plasma perturbations affecting wave propagation



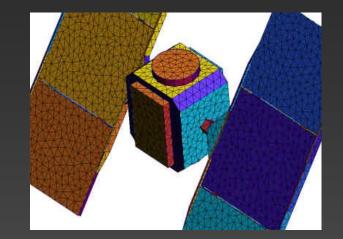
$\lambda_D = \sqrt{\frac{\epsilon_0 k_B T_e}{n_0 e^2}}$	Orbit	Altitude	Temperature	Density	λ _D
	LEO	\pm 300 km	0.1 eV	n _e ~ 10 ⁶ cm ⁻³	λ _D ~ 1 mm
	PEO	± 800 km	1 eV	n _e ~ 10 ⁴ cm ⁻³	λ _D ~ 1 m
	GEO	± 36000 km	5 to 20 keV	n _e < 1 cm⁻³	λ _D ~ 100 m


Plasma modeling PicUp3D

- ESA open source approach
 - Need of a simulation software to model complex spacecraft/plasma interactions
 - Most advanced codes are not available for the European spacecraft charging community:
 - NASCAP-2K is export restricted
 - Most of the codes are in-house proprietary software
 - Open source approach allows
 - Low cost, community based development
 - High possibilities of extensions and adaptation to particular studies requirements
 - Education applications

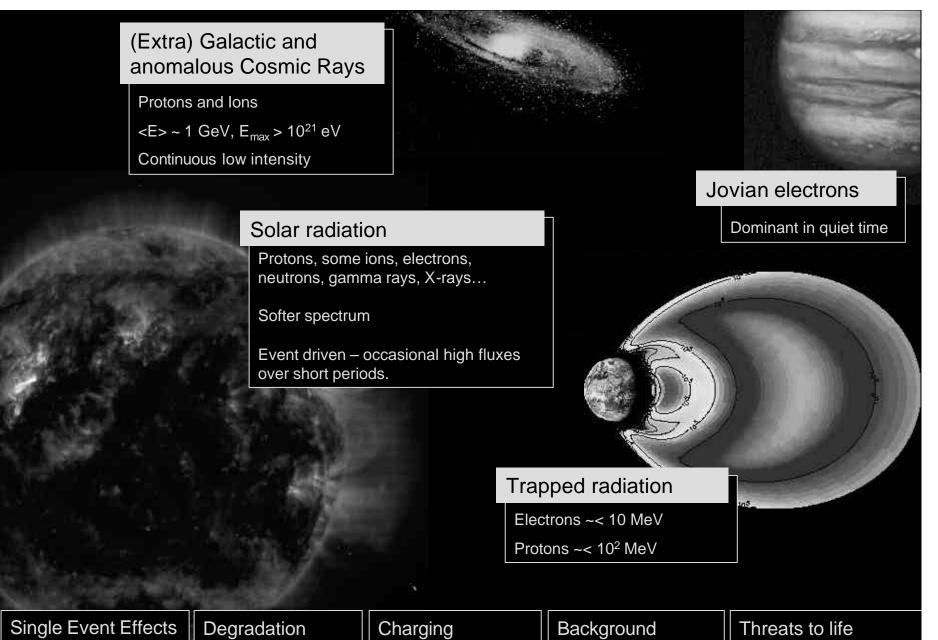
PicUp3D simulation code prototype

- Developed in the frame of the SPINE Network by a PhD student
- Open source
- 3D Particle-In-Cell approach.
- Implemented in JAVA.
- Vlasov-Poisson problem approximated by the motion of macro-particles interacting with self-consistent E and imposed B.
- Triangular unstructured mesh to describe a detailed spacecraft geometry
- Now fully operational, validated and used for mission support


9th Topical Seminar on Innovative Particle and Radiation Detectors

Plasma modeling SPINE / SPIS

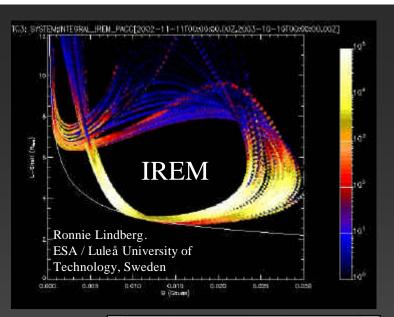
SPINE Community


- Spacecraft Plasma Interaction Network in Europe
- Objective: coordinating efforts in all domains related to spacecraft charging and sharing resources
- Numerical analysis methods and algorithms, software architecture and data interface (code implementation, validation techniques, testing and post-processing, common Library of generic routines for s/c-plasma-interaction simulations)
- Development of a database on material properties, environmental data and space flight observations
- Development of a Database of results and publications
- Preparing in orbit investigations
- Establishment standard procedures and method for hardware design
- Training of young scientists and engineers
- Establishment of External collaborations

http://www.spis.org/spine

SPIS

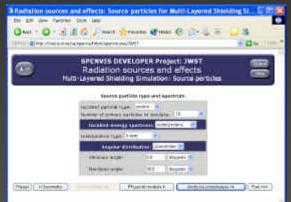
- Community development and validation: development for the community, by the community
- Modular and adaptable software
- New functionalities (full 3D unstructured mesh...)
- Web interface for information and data exchange
- Development by ONERA, Artenum, Paris 7 under ESA contract
- http://www.spis.org/spis

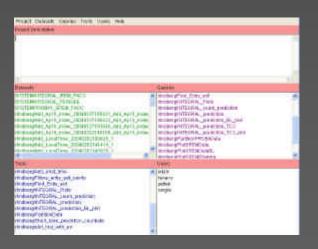


Effects

Single Event Effects	Degradation	Charging	Background	Threats to life
SE Upset SE Latchup	Ionisation, Displacement Components, solar cells, detector parameters	Discharges Interferences from electro-magnetic systems	Spurious signals Detector overload	Dose (Equivalent dose) in manned space flights Radiobiological effects

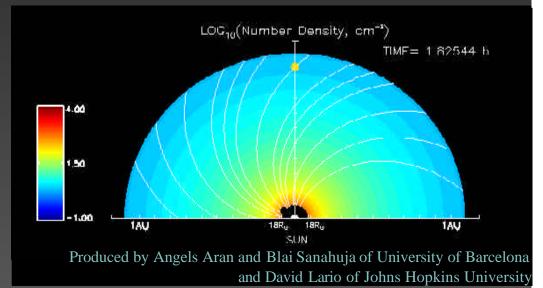
Radiation Monitors


- REM [1kg, 130x100x80mm]
 - protons (>30MeV) and electrons (>1MeV)
 - STRV-1b ('94-'98), MIR ('94, '96)
- SREM [2.5kg, 96 mm x 122 mm x 217 mm]
 - electron flux (0.3-6 MeV), proton flux (8-300 MeV) total radiation dose
 - STRV-1c, Proba (Oct, '01), Integral (Oct, '02), Rosetta (Feb, '04)
 - Future GSTB V2 ('05), Herschel ('07), Planck ('07), Gaia (~'10)
- MRM [<200g, 64x42x20mm]</p>
 - Based on simple scintillator design
 - Proba ('01)
 - 2 new flight models expected in '06
- Future...



SEDAT, SPENVIS

- SPENVIS Space Environment Information System
 - Comprehensive implementation of space environment and effects models and tools
 - Frequent downloads of data from online sources e.g. NOAA
 - New models can be integrated into the system
 - http://www.spenvis.oma.be/spenvis
- SEDAT Space Environment Data System
 - Database of space missions and monitors
 - Simplified, programmable access to data and meta-data
 - Support for inclusion of additional user-defined datasets
 - Users can collaborate and share datasets
 - http://www.wdc.rl.ac.uk/sedat



Radiation Environment Model Development

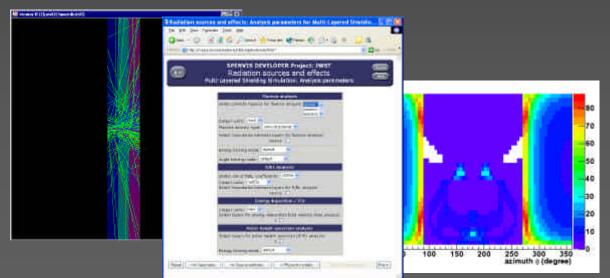
- TREND: Trapped Radiation Model Developments (1989-'99)
 - Methods to improve static models constructed from 1960s data
 - radiation belt dynamics
 - correlation with geophysical parameters.
 - use of new data sets and advances in radiation belt physical simulations
 - inner proton belt interactions with the atmosphere
 - Update of UNIRAD radiation environment software package and development of UNILIB
 subroutine library for software development.
 - <u>http://www.magnet.oma.be/home/trend/trend.</u>
 <u>html</u>

- Possible Interpolation and/or Forecast Tool for SPEs
 - Simulation of shock propagation to 1 AU

- RERMM: Radiation Environment Research from Multiple Monitors
 - Develop tool to interpolate between heterogeneous measurements of ionising particles
 - Future anomaly analysis and characterisation of detector background

- Energetic Electron Environment Models for MEO
 - Galileo system interaction with the outer electron belt
 - Open competition

Particle transport simulations in the space environment domain

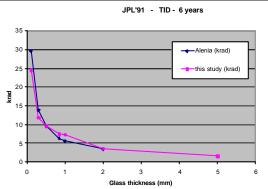

- Interaction of environment particles with spacecraft structure and detectors
 - Primaries, secondary particle production
 - Dose estimation (Ionising, Non-Ionising)
- Microscopic effects description
 - Charge balance, SEE, displacement damage,...
- Space environment modeling
 - Trapped radiation (Earth, Mercury,...)
 - Atmospheric showers (Earth, Mars,...)
- Scientific detector studies (signal extraction, background estimation,...)

- Result uncertainties
 - Simulation engine models
 - Component parameterisation
 - Geometry model approximations
 - Systematics from the space environment models
- ESA is trying to address all these aspects
 - In-house work
 - External contracts

- MC tool requirements
 - Physics description \rightarrow proton, electron, ion, neutron, pion, gamma (+X-ray), optical photons
 - Wide energy range
 - Geometry description (I/O, flexibility)
- Geant4 chosen by ESA as standard simulation toolkit for particle transport
 - Becoming adequate for the description of the relevant phenomena

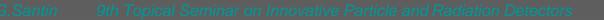
Mission simulation and engineering tools

- "Applications" targeted at a specific mission or problem
 - Mission analyses
 - Degradation, background, charging
 - Examples: XMM, GAIA, Smart-2
 - Radiation monitors: design and calibration
 - SREM, MRM
- Simulation "engineering tool" development
 - Shielding optimization
 - Radiation effects to detectors/components
 - SSAT, MULASSIS, NIEL



Santin 9th Topical Seminar on Innovative Particle and Radia.

Geant4 Mission specific support



GAIA

- 2011, L2 orbit
- Focal plane CCD
- High fluence, TID, NIEL
- Waiting for new shielding design

XMM / NEWTON

- Radiation belt passages
- FP detector
- Grazing angle proton scattering
- Instrument shielded during high fluxes

200

300

Initial proton energy (keV)

+ EPIC -+ RGS

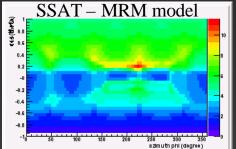
500

400

Efficiency

10"

10-7

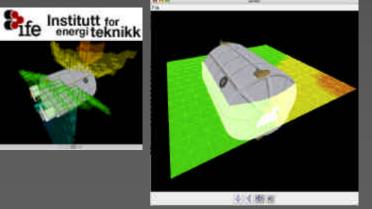

0

100

Geant4-based engineering tool development

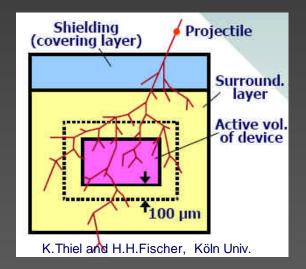
- **MULASSIS**
 - MUlti-LAyer Shielding Simulation Software
 - Geant4 based, for shielding calculations
 - Integrated into SPENVIS with a WWW interface
 - Source code and precompiled executables downloadable
 - Shielding assessment, Solar array, ...

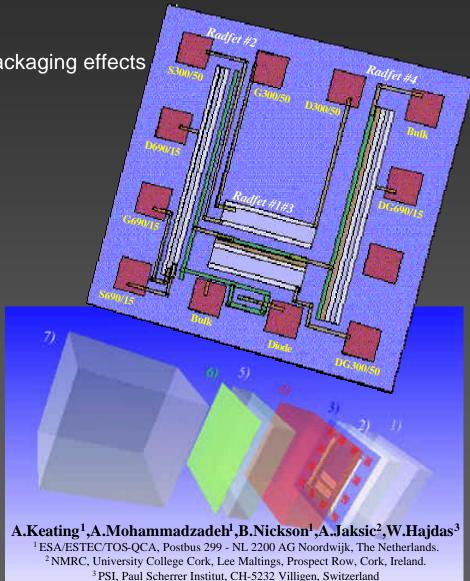
tot sec - ratio to Aluminium - thickness 1 g/cm2 IPI -9 ESE Mono-energetic 60 Me Mono-energetic 300 Me 60% of the second open and the second open and a second second

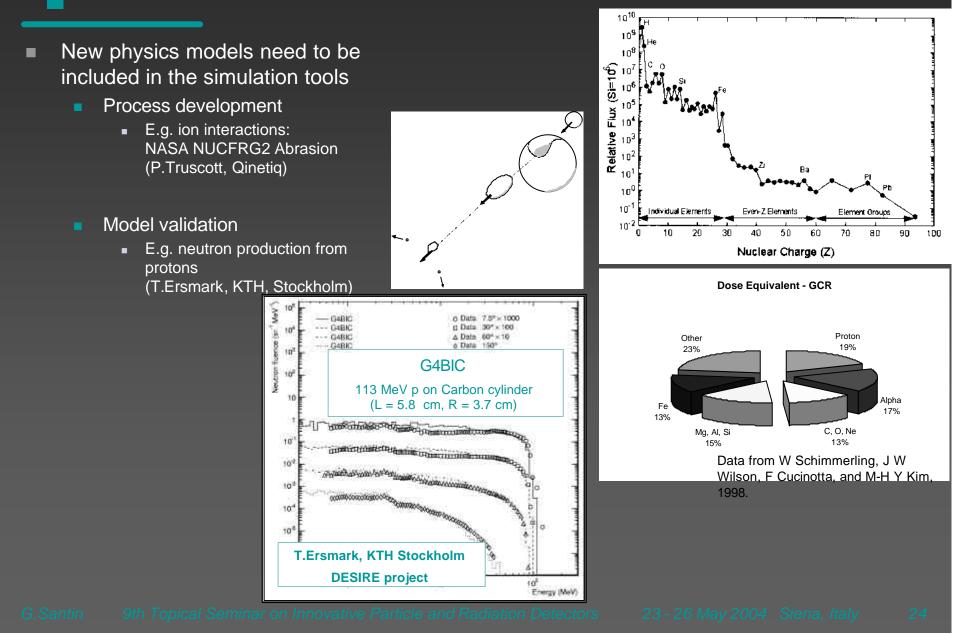


SSAT

- Sector Shielding Analysis Tool
- Ray tracing: shielding levels and shielding distribution from a user-defined point within a Geant4 geometry


DESIRE RadVis


- 3D visualization of radiation flux and dose levels in and around the module
- improve radiation awareness of astronauts and ground personnel at ESA


Radiation Environment Effects on Components (TEC-QCA)

- Packaging effects
- Component performance degradation
 - Simulation and prediction tools

Geant4 physics for space applications development and validation

Gathering the G4 Space Users' community

- Experience of the various groups around the world
- G4 Space Users' web page
 - Collection of topics, papers
 - Link to space related resources
 - http://www.estec.esa.int/wmwww/WMA/Collaborations/Geant4Space
- G4 Space Users Workshops
 - Jan 2003 ESTEC
 - May 2004 Vanderbilt
- Geant4 Technical Forum
 - Space User requirement collection

Particle environment simulation Summary

- Successful application of G4 Monte Carlo techniques for the estimation of the HE Radiation Environment effects on satellites
 - Environment models
 - Radiation effects on components and detectors
 - Complete mission analyses and engineering tool development
- Geant4 description of spacecraft-particle interaction suitable for manned and unmanned mission analysis
 - Assessed EM physics performance
 - New promising hadronic models need
 - Still need validations and extensions (protons, ions)
- Need for engineering simulation tools
- Geant4 Space Users' world community
 - Coordination and partial funding

Space Weather

• *"conditions on the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health"*

[US National Space Weather Programme]

Effects

- Satellites affected by radiation, plasma, atmosphere, particulates;
- Astronauts ISS, future exploration missions;
- Radiation hazards to air crew and avionics;
- Ground power outages from currents induced in lines;
- Disruption to communications relying on the ionosphere;
- Disruption of navigation satellite signals (GPS Galileo);
- Prospecting;
- Climate;
- http://www.esa.int/spaceweather

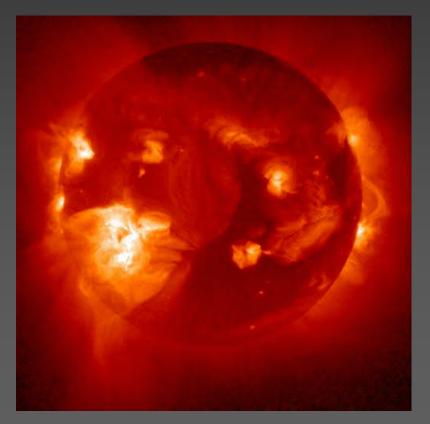
23 - 26 May 2004 Siena, It

Space Weather GSP Initiative & Applications Pilot Project

1999-2001: ESA sponsored two studies

- feasibility of a European Space Weather Programme
- identified areas in need of further development e.g. data coverage, long term continuity, reliability and model accuracy.
- Difficulties identified in finding committed users and hence problems in gauging the financial/strategic benefit of a space weather service.
- Where we are now: a 2-year co-funded applications based pilot project (2MEuro)

- Network of Service Development Activities (SDAs) for space weather applications with close links to users.
 - 26 activities: 16 ESA co-funded SDA activities + 10 independently funded activities. More being added..
- SDA's are participating in a common Space Weather European Network (SWENET).
 - Main tasks will include developing a data and service distribution infrastructure in consultation with the SDAs.
- Independent benefit assessment will establish the economic and other benefits of the services



http://www.esa.int/spaceweather

- ESA purpose: for exclusively peaceful purposes
 - Improve competitiveness of European industry
 - Conduct cost-effective research and development, and operations
 - Opportunities of collaboration with academia:
- Project support in the field of Space Environment and Effects
 - Needs emerged
 - Up-to-date data and models
 - Accurate effect prediction tools
- Dedicated software modules developed
 - Open source
 - Successful operation
- Coordination of/with relevant communities
 - Plasma SPINE
 - HEP Geant4
 - Services Space Weather

