Gflash as a Parameterized Calorimeter Simulation for CMS

Soon Yung Jun Carnegie Mellon University for the CMS Collaboration

XIV International Conference on Calorimetry in High Energy Physics May 10-14, 2010 IHEP, Beijing, China

Introduction

• CMS detector simulation

- primarily uses the Geant4 (G4) toolkit to simulate the passage of particles
- tracks the primary particles and all their secondaries using a physics list consisting of a number of models to describe different types of interactions
- CPU needed for simulation of particle showers in calorimeter increases linearly with the energy (high multiplicity and energetic particles at CMS)

Introduction

- Gflash is an alternative option for the CMS calorimeter simulation
 - a parameterized simulation of electromagnetic (EM) and hadronic showers
 - replaces the standard tracking (G4) by parameterized physics at the first inelastic interaction within defined detector envelopes (calorimeters)
 - parameterized shower profiles \rightarrow energy spots \rightarrow hits/digitization
 - flexible to tune and fast
 - example: simulation of the H1 test calorimeter

(a) Standard (Geant) tracking

(b) Parameterized energy spots

Gflash - History

Fast Simulation of Electromagnetic and Hadronic Showers

- G. Grindhammer, M. Rudowicz and S. Peters, NIM A290 (1990) 469-488
- H1 calorimeter for H1 at HERA
- Sophisticated, but fast
- Adapted for CDF calorimeter simulation at Tevatron Run–II
 - CPU gain up to 100 (CDF)
- Ideal for
 - simple geometry
 - repetitive sampling structure
 - single effective medium

GFLASH in a Nutshell

• Parameterize the spacial distribution of energy

$$dE_{dp}(\vec{r}) = \frac{E_{dp}}{2\pi} f(z) dz f(r) dr$$

- f(z): longitudinal shower profile - f(r): lateral shower profile
- Take into account correlation and fluctuation of individual showers
- Distribute N_{spot} with the sampling structure with fluctuation a

$$\frac{\sigma}{E} = \sqrt{\frac{a^2}{E} + \frac{N^2}{E^2}} + C^2, \qquad E_{spot} = a^2$$

• Visible energy with the relative sampling fraction to mip

GFLASH in a Nutshell - EM Shower

• Longitudinal profile along the shower depth (z) in radiation length $[X_0]$

$$f(x) = \frac{1}{E} \frac{dE}{dx} = \frac{x^{\alpha - 1} e^{-x}}{\Gamma(\alpha)} \qquad x = \beta z$$

where the correlated pair (α, β) characterizes the shower shape (tune-on, tail)

• Lateral Profile: radial distribution of energy in each longitudinal f(x)dx

$$f(r) = \frac{1}{dE(x)} \frac{dE(x,r)}{dr} = \frac{2rR_0^2}{(r^2 + R_0^2)^2}, \qquad \langle R_0 \rangle = \left[R_1 + (R_2 - R_3 \ln E) \cdot z\right]^2$$

• Parameterization is material-independent if E in E_c and z in X_o units (Rossi)

S. Y. Jun @CALOR2010 5/10-14/2010

GFLASH in a Nutshell - Hadron Showers

- Longitudinal profile: three $\Gamma(\alpha, \beta)$ -functions for three different shower classes
 - H(x): pure hadronic shower
 - F(y): π^0 contribution in the first inelastic interaction
 - L(z): π^0 contribution in the later interactions

$$E_{dp} = f_{dp} E_{inc} [(1 - f_{\pi^0}) \cdot H(x) dx + f_{\pi^o} (1 - f_{\pi^0}^l) \cdot F(y) dy + f_{\pi^o} f_{\pi^0}^l \cdot L(z) dz]$$

where f_{dp} $(f_{\pi^0}, f_{\pi^0}^l)$: fraction of deposited energy (by all π^0 , late π^0)

• Lateral profile: same form to that of EM except $\langle R_0 \rangle = R_1 + (R_2 - R_3 \ln E) z$

Gflash at CMS

- use G4 Fast Simulation Manager
- replace G4 for calorimeter simulation
- regions for parameterization (envelopes: EB,EE,HB,HE,HO)
- particle type (e^{\pm} , π^{\pm} , K^{\pm} , p, \bar{p})
- kinematic/geometrical conditions
- Challenge for CMS
 - geometry (gaps between Ecal and Hcal)
 - magnetic field (calorimeter inside 3.8T)
 - new hadronic parameterization
- Tuning Gflash to data
 - 2006 e^- test beam data
 - 2006 hadron test beam data
 - *in-situ* collision data (underway)

Calorimeter Type	Thickness
Ecal Barrel $(PbWO_4)$	25.8 X_o , 1.1 λ
Ecal Endcap $(PbWO_4)$	24.7 X_o , 1.1 λ
Hcal Barrel (Brass)	5.7 λ
Hcal Endcap (Brass)	8.1 λ
Hcal Outer (Scint. tiles)	1(2) imes 1.0cm

New Parameterization of Hadron Shower for CMS

• Longitudinal profile: a combination of sub-profiles in Ecal and Hcal

 $F = f_{\text{ecal}}F_{\text{ecal}} + f_{\text{hcal}}F_{\text{hcal}}$

where f_i (i = ecal, hcal) is related to the fraction of deposited energy in *i*-detector

• Functional hypothesis: F_i is the superposition of two Γ -distributions:

$$F_{\text{ecal}} \text{ (or } F_{\text{hcal}}) = [cL(x_e; \alpha_e, \beta_e) dx_e + (1-c)L(x_h; \alpha_h, \beta_h) dx_h],$$
$$L(x_i; \alpha_i, \beta_i) = \frac{x_i^{\alpha_i - 1} e^{-x_i}}{\Gamma(\alpha_i)}, \quad x_i = \frac{\beta_i z}{d_i} \qquad (d_e = X_0, d_h = \lambda_0)$$

• Build sets of longitudinal parameters, $\vec{x} = \{c, \ln \alpha_e, \ln \beta_e, \ln \alpha_h, \ln \beta_h\}$ using the n^{th} moment of Γ distribution (m_n) and the hit energy (E_j) of G4 steps

$$m_n = \sum_{j=1}^{nhit} (z/d_j)^n E_j / \sum_{j=1}^{nhit} E_j \qquad n = 1, 2, 3..$$

$$\alpha = m_1^2 / (m_2 - m_1^2)$$

$$\beta = m_1 / (m_2 - m_1^2)$$

S. Y. Jun @CALOR2010 5/10-14/2010

• Individual fluctuations (μ_i, σ_i) and their corrections (ρ_{ij}) : $\vec{x} = \{x_i\}, \ \vec{\mu} = \langle \vec{x} \rangle, \ \vec{\sigma} = \delta \vec{x}, \ \vec{\phi}$: a vector of normal random

$$\vec{x} = \vec{\mu} + \vec{\sigma} \mathbf{C} \vec{\phi}$$
 with $\rho = \mathbf{C} \mathbf{C}^T$

where C is Cholesky decomposed matrix of correlation matrix ρ .

• Laternal profile is well modeled by $f(r) = 2rR^2/(r^2 + R^2)^2$ where R is to be a log-normally distributed with the mean (μ) and standard deviation σ related to the expected value of (R_0) and its variance (V)

$$\mu = \ln R_0 - \sigma^2$$
, $\sigma^2 = \ln(V/R_0^2 + 1)$.

• Constructed p.d.f., f(r) of energy density using parameters E_i^{jk} for the *i*-th lateral interval (r_i) , the *j*-th depth segment and the *k*-th beam energy bin. Then, R_0 and V are calculated using E_i^{jk}

$$R_0^{jk} = \frac{2}{\pi} \sum_i E_i^{jk} r_i, \qquad V^{jk} = \sum_i E_i^{jk} (r_i - R_0^{jk})^2$$

• R_0 and V are parameterized as the shower depth (z) and the energy

$$R_0 = R_c(E) + R_s(E)z, \qquad V = [S_c(E) + S_s(E)z]^2 R_0^2.$$

S. Y. Jun @CALOR2010 5/10-14/2010

Tuning Gflash to Test Beam Data

- Gflash tuning to 2006 test beam data
 - use the detector geometry used for test beam set-up
 - simulate single particle events at a fixed energy
 - follow the same procedure and calibration consistent with test beam analysis
- e^- test beam data and tuning
 - beam energies: 20, 30, 50, 80, 120 GeV
 - compare energy responses in $N \times N$ crystals (N = 1, 3, 5)
- hadron test beam data and tuning
 - low energy (2 9 GeV) beams: mainly π^{\pm} , p and some K^{\pm} , \bar{p}
 - high energy (20 350 GeV) beams: π^- , p, $ar{p}$
 - compare energy responses with Ecal (7×7 crystals) and Hcal (3×3 towers)
- Precision tuning with single particle responses with *in-situ* collision data from CMS is also underway

EM Energy Shape Tuned to Test Beam Data

 $n \times n$ crystal response of 50 GeV e^- compared to 2006 e^- test beam data

Both absolute response and relative response are in good agreement
 - longitudinal containment and lateral spread are well modeled and tuned

Relative Response and Resolution of EM Shower

 $\frac{E_{n \times n}}{E_{N \times N}}$ compared to 2006 e^- test beam data (20,30,50,80,120,150 GeV)

Scale independent lateral response and resolution as the beam momentum

Hadronic Energy Shape Tuned to Test Beam Data

energy response of 100 GeV π^- and 20 GeV p compared to 2006 test beam data

 Energy sharing (correlation) between Ecal and Hcal as well as the pure hadronic (MIP like in EM) response are well described

Hadronic Energy Response and Resolution

 $\langle E/P \rangle$ as P and its RMS compared to 2006 test beam data (π^- and p)

Performance for Single Pions: CPU and Memory Usage

- CPU: Gflash $\propto \ln E$ vs. Geant4 (QGSP_BERT) $\propto E$
- Memory usage (RSS or VSIZE): marginal increase compared to Geant4
- CPU performance will be further optimized for general physics processes

Summary

- Gflash is successfully implemented for the CMS calorimeter simulation
- Preliminary tuning to 2006 test beam data (e^- and charged hadrons) is done
- Promising computing performance compared to full Geant4 without loss of generality
- Precision tuning to *in-situ* collision data from CMS is underway