



# Improvements in the Geant4 Hadronic Physics

### Outline

Motivation

Physics lists

Inelastic hadronic models

- String models
- Cascades
- Precompound and de-excitation
- Cross sections
- Other notable models
- Validation
- □ Summary

CHEP 2010, Taipei October 18, 2010 Sunanda Banerjee (on behalf of Geant4 Hadronic Working Group)

# Geant 4 The LHC and Geant4 Hadronic Physics Improvements

- 춖
- Turn-on of LHC detectors has motivated the improvement of hadronic physics models
  - in the recent past, test beam data have spotlighted flaws and driven improvements

≻ATLAS, CMS, HARP

- in the near future data from the full detectors will provide strong tests of the models
- Development has concentrated on several inelastic models
  - string models, intra-nuclear cascades, precompound models, and elastic and inelastic cross sections
  - improvement in these models has resulted in better agreement with test beam data



October

## **Physics List**



- Since none of the models within Geant4 could explain all physics processes, it is customary to register several physics processes in a list.
  - EM processes are usually valid over the entire energy domain but each discrete process is described separately, e.g., pair production, Compton scattering, ...
  - Hadronic processes are valid over a finite energy domain. Two models may have validity over an overlapping energy region



# **Geant 4** Fritiof Fragmentation (FTF) Model



- Quark-gluon string (QGS) model has been used extensively in Geant4 physics lists
  - good performance at high energy (> 20 GeV)
  - not valid below 10–15 GeV

□ The FTF model is much improved during last 2-3 years

- single diffraction added
- cascade model motivated by Reggeon theory included
- model now performs well down to 5–10 GeV
- Now possible to join FTF model directly to Bertini cascade at 5 < E < 10 GeV</p>
  - intervening GHEISHA-based models no longer needed
  - reduced discontinuity in detector response

## Geant 4 FTF Model Predictions vs HARP-CDP Data





## **Bertini-style Cascade**



- Used in QGSP\_BERT physics list (and others) to handle inelastic collisions from 0–10 GeV
  - good performance below 5–6 GeV
  - may be responsible for part of the discontinuity in calorimeter response seen ~10 GeV by ATLAS, CMS and HARP
- Physics improvements
  - almost all energy-momentum non-conservation removed
  - old and inaccurate pi-nucleon and nucleon-nucleon angular distributions replaced with new ones
- Performance improvements
  - reduction in object creation and deletion by factor ~10
  - increased CPU speed

# Precompound and De-excitation Models

- The Geant4 precompound model is used in the QGSP\_BERT (and other) physics lists
  - Responsible for de-exciting the nucleus after high energy interaction of the Quark Gluon String (QGS) model
  - valid for energies below ~200 MeV
- Improvements during last 2 years include:
  - Improved density-of-states calculation
  - Emission probabilities had been based on very old data (pre-1960s) – use of modern data has improved these significantly
  - Hybrid use of both Weisskopf-Ewing and GEM models improves nuclear fragment spectra from decay

# Geant 4 Model Predictions vs. IAEA Data for p+Au $\rightarrow \alpha$ +X



October 18, 2010

Improvements in Geant4 Hadronic Physics

## Hadronic Cross Sections



- Barashenkov, Axen-Wellisch, and GHEISHA parameterized cross sections are widely used in Geant4 physics lists
  - generally good performance in the range 1–90 GeV
  - problems:
    - > no high energy rise in the Barashenkov parameterization
    - ➢ little resonance detail at low energies
    - ➤ kaon and anti-nucleon cross sections not well treated
- Several alternative cross sections are developed as alternatives
  - CHIPS elastic and inelastic parameterizations treat more particle types
  - Parameterizations based on Glauber-Gribov theory to include high energy rise



### **IHEP and Dubna Data**

\*

n-C inelastic cross-section



October 18, 2010

Improvements in Geant4 Hadronic Physics

## **Hadronic Physics Validation**



- During the past two years much effort has been devoted to improve Geant4 hadronic validation
- Hadronic working group now participates in regular validation efforts comparing Geant4 to other codes
  - IAEA (wide range of spallation data 0 < E < 3 GeV)</li>
  - SATIF (shielding application comparisons)
- A large number of validation suites test Geant4 hadronic physics over all energy ranges
  - a combined hadronic validation suite will soon be made publicly available

# **Geant 4** New Hadronic Validation Web Page





#### October 18, 2010

#### Improvements in Geant4 Hadronic Physics



### **Other Notable Models**



### □ INCL/ABLA

- C++ translation of CEA/Saclay code
- cascade (INCL) + de-excitation (ABLA) used for nucleon, pion, nuclear projectiles of E < 3 GeV</li>
- tuned to spallation data
- QMD nucleus-nucleus collision model
  - quantum molecular dynamics code developed wholly within Geant4
  - valid for all nuclear targets and projectiles in the energy range
    0.2 GeV < E/A < 5 GeV</li>
  - higher energy version (RQMD) being developed

# Geant 4 Nucleus-nucleus: G4QMD vs Data



## Impact on LHC Experiments

Geant 4



CMS and ATLAS did extensive tests of their calorimeters with test beams and the experiments monitored the improvements of Geant4 hadronic models over years Combined CMS calorimeter response to π<sup>-</sup> and p



# **Geant 4** Impact on LHC Experiments (II)



The experiments adopted newer Geant4 versions and newer physics lists (current default is QGSP\_BERT)

Response of CMS Hadron Calorimeter to  $\pi^-$  and p





### Summary



- Geant4 provides a large number of models for hadronic physics each valid over a certain energy domain for a number of incident particles. These models are put together in a physics list to satisfy a given application domain.
- The models are continuously improved over the years adding new features and new models are added to the list.
- The models are validated against data obtained from thin target experiments as well as from thick targets and calorimeters. A validation framework is being developed to keep track of results from all the comparisons.
- LHC experiments have successfully deployed Geant4 physics list to model the performance of the detectors. Hadronic models are successfully used for space and medical applications.





# **Backup Slides**

October 18, 2010

Improvements in Geant4 Hadronic Physics

# Geant 4 INCL/ABLA (data in blue, model in red)



p(1.2 GeV) + 208Pb (INCL4+ABLA)

#### Improvements in Geant4 Hadronic Physics