Geant4 electromagnetic physics for the LHC and other HEP applications

Andreas Schälicke on behalf of the Geant4 EM Working Groups

DESY, Zeuthen

October 18th, CHEP 2010, Taipei, Taiwan

A. Schälicke (DESY, Zeuthen)

Geant4 EM physics

October 18, 2010 1 / 15

イロト イポト イヨト イヨト

Outline

Introduction Geant4 EM physics

Infrastructure upgrades

Software design CPU performance Validation framework

Physics validation

Bremsstrahlung & Pair production Updated Fluctuation model Backscattering of electrons Multiple scattering of muons & hadrons Energy deposition in thin Si layer LHC type calorimeter response

Summary

イロト イポト イヨト イヨト

Introduction

Geant4

is a toolkit for the simulation of the passage of particles through matter.

EM physics processes

- \blacktriangleright interactions of e^\pm and γ
- electromagnetic interactions of muons, hadrons and ions
- x-ray processes and processes with optical photons

• • • •

Application area

▶ HEP, medical, space, ...

dedicated models exist for different use cases

A. Schälicke (DESY, Zeuthen)

Geant4 EM physics

(日) (同) (三) (三)

Introduction

Geant4

is a toolkit for the simulation of the passage of particles through matter.

EM physics processes

- \blacktriangleright interactions of ${\it e}^{\pm}$ and γ
- electromagnetic interactions of muons, hadrons and ions
- x-ray processes and processes with optical photons

• • • •

Application area

▶ HEP, medical, space, ...

dedicated models exist for different use cases

(日) (同) (三) (三)

Infrastructure upgrades

Common software design by EM Standard and Low-Energy

- available since G4 version 9.3
- use higher level tools (e.g. spline interpolation in physics tables)
- allows combination of different models for different energy regions in one process
- \Rightarrow new components for physics lists (Builder)

A. Schälicke (DESY, Zeuthen)

October 18, 2010 4 / 15

Infrastructure upgrades

Improvements in CPU performance

- G4 9.3 default energy interval 1 keV-10 TeV
- Number of bins reduced to 70 (~20% memory saving)
- significant improvement of start-up time for application with many materials (e.g. LHC experiments)

- Revised converter of cut in range to production thresholds
- Revised of physics vector classes
- Cleaned up standard EM initialization

イロト イポト イヨト イヨト

Geant4 version	amd 32-bit	amd 64 bit
G4 9.2	147 s	179 s
G4 9.3	51 s	56 s

Physics validation - Framework

Two stage test approach

- low-statistics test run regularly by STT
- high-statistics test run using LxBatch, etc.

Procedure

- semi-automatic run of jobs
- results generated by scripts
- comparison plots available on the Web

<ロ> (日) (日) (日) (日) (日)

Physics validation - Framework

- PHP based Web interface: http://www-zeuthen.desy.de/geant4
- new JSP based system in development (collaboration with G4 hadronic WG)

(日) (同) (日) (日)

Physics validation - Bremsstrahlung & Pair production

New relativistic bremsstrahlung model

- Bethe-Heitler formula with corrections
- complete screening (valid E > 1 GeV)
- includes density and LPM effect and consistent combination a'la Ter-Mikaelian
- available since Geant4 version 9.2

New relativistic pair production model

- includes LPM effect
- important only for E > 1 10 TeV
- available since Geant4 version 9.3

Data: H.D. Hansen et al., Phys.Rev.D 69, 032001 (2004)

< ロ > < 同 > < 三 > < 三

A. Schälicke (DESY, Zeuthen)

Geant4 EM physics

October 18, 2010 8 / 15

Physics validation - Multiple scattering & Fluctuation

revised Urban multiple scattering model

- better description esp. for low Z materials
- available since G4 9.3
- will be default in G4 9.4

new fluctuation model

- fixes unphysical behavior for low density materials
- results become less cut dependent
- ▶ included in G4 9.4

• • • • • • • • • • • • •

Backscattering of electrons

- new test for electron MSC
- energy 0.1 1 MeV
- targets: Be, C, Al, Ti, Mo
- Urban MSC model with improved parameters gives good results

z (mm)

-2

-2 -1 0

y (mm)

Backscattering of electrons

- new test for electron MSC
- energy 0.1 1 MeV
- targets: Be, C, Al, Ti, Mo
- Urban MSC model with improved parameters gives good results

-2

-1 0

z (mm)

1

y (mm)

0

-1 -2

Multiple scattering of muons

- ▶ 7.3 Gev/c muon on Copper
- default model (Urban) gives good description of core
- deviation at large angles

Multiple scattering of muons

- ▶ 7.3 Gev/c muon on Copper
- default model (Urban) gives good description of core
- deviation at large angles
- new model (WentzelVI) even better
- will be default for muons in G4 9.4

Multiple scattering of hadrons

- ▶ 50 200 GeV/c
- various targets from Hydrogen to Lead
- comparison with data and Moliere theory

Comparison of GEANT4 and data θ_e : Cu & 175 GeV

▲ □ ► ▲ □ ► ▲

Multiple scattering of hadrons

- ▶ 50 200 GeV/c
- various targets from Hydrogen to Lead
- comparison with data and Moliere theory

Comparison of GEANT4 and data θ_e : Cu & 175 GeV

• • • • • • • • • • • •

- energy deposition spectrum characterized by
 - Most Probable energy deposition
 - Full Width at Half Maximum
- Thin Silicon layer of : 300 um (Hancock) , 1565 um (Nagata)

Most Probable Energy Deposition △ of GEANT4 9.3ref08 and Bichsel data with Gauss fit, emstandard & Cut = 10 um

- energy deposition spectrum characterized by
 - Most Probable energy deposition
 - Full Width at Half Maximum
- Thin Silicon layer of : 300 um (Hancock) , 1565 um (Nagata)

Comparison of Most Probable Energy Deposition ∆ between GEANT4 9.3p01 and Bichsel data with Gauss fit, emstandard & Cut = 10 ur

- energy deposition spectrum characterized by
 - Most Probable energy deposition
 - Full Width at Half Maximum
- Thin Silicon layer of : 300 um (Hancock) , 1565 um (Nagata)

Comparison of Most Probable Energy Deposition 👌 between GEANT4 9.3ref08 and Bichsel data with Gauss fit, emstandard & Cut = 10 u

- energy deposition spectrum characterized by
 - Most Probable energy deposition
 - Full Width at Half Maximum
- Thin Silicon layer of : 300 um (Hancock) , 1565 um (Nagata)

Comparison of Full Width at Half Maximum w between GEANT4 9.3p01 and Bichsel data with Gauss fit, emstandard & Cut = 10 u

- energy deposition spectrum characterized by
 - Most Probable energy deposition
 - Full Width at Half Maximum
- Thin Silicon layer of : 300 um (Hancock) , 1565 um (Nagata)

Comparison of Full Width at Half Maximum w between GEANT4 9.3ref08 and Bichsel data with Gauss fit, emstandard & Cut = 10 ur

Physics validation - LHC type calorimeter response

Sampling Calorimeter

- Example Atlas EM calo
- simplified setup
- 2.3 mm Pb, 5.7 mm IAr
- test visible energy fraction and resolution
- in general results very stable
- G4 version 9.4 gives
 0.5% increased response relative resolution not changed

Summary

EM performance and infrastructure improvements

- common design with low energy processes
- new physics builder cover wider energy range by using different models in different energy regions
- sizable CPU performance increase during initialization stage

EM physics improvements

- ▶ LPM effect consistent in Bremsstrahlung and Pair production
- revised fluctuation and MSC models
- extended validation suite with tests of MSC of electrons, muons and hadrons
- visible impact of LHC calorimeter response
- validation results accessible via new Web interface

E SQA

イロト イポト イヨト イヨト