



# Validation and Tuning of the CMS Full Simulation

#### Mike Hildreth

#### **Université de Notre Dame du Lac & Fermilab**

**Representing the CMS Collaboration** 

20 October, 2010

### **Overview of CMS Simulation**



**‡**Fermilab



#### **Overview of CMS Simulation**



**娄**Fermilab



#### **Overview of CMS**





#### **Overview of CMS**





## NOTRE DAME

#### **Overview**



- Status of Tracker Geometry & Material Description
  - Material studies
    - photon conversions/nuclear interactions
  - Tracker dE/dx results
  - Track distributions
- Calorimeter Modeling
  - Electron bremsstrahlung
  - Jet and Missing Energy studies
- Muon System
  - Hit patterns and isolation variables
- Future Prospects

low energy nuclear and EM modeling, accuracy of material specification, low  $p_T$  generator physics

material specification, physics models in

- particle showers,
- calorimeter noise models
- material specification,
  - neutron transport,
  - shower models

For other results, see:

Validation of Geant4 Physics Models with LHC Collision Data (PS08-1-170), Sunanda Banerjee

#### **Detector Material Budget**





(6) 20 October, 2010



#### **Detector Material Studies**



Reconstruction of Photon Conversions and Nuclear Interactions allow a mapping of the material distribution in the detector

Reminder - Photon conversion probability in a thin cylindrical shell:

$$dN_{conv} = N_{\gamma}(R,\theta,\phi) \cdot R^2 \sin\theta \, d\theta \, d\phi \frac{P}{X_0} dR$$

For Nuclear Interactions:

- swap P(photons) ~7/9 to P = 1, 
$$X_0 \rightarrow \lambda_0$$

 $N_{\gamma}(R,\theta,\phi) \propto \frac{1}{R^2} \sin \theta$ 

(But,  $X_0$  and  $\lambda_0$  are sensitive to different physics)



Nuclear interactions:



Good vertex resolution, many soft tracks with large impact parameters



#### **Some examples:**





#### **Extracting the material budget**





can unfold this distribution using estimates of the photon position resolution



#### **Extracting the material budget**





can unfold this distribution using estimates of the photon position resolution

astonishingly good agreement between data and simulation



#### **Extracting the material budget**





- Other methods also employed:
  - track multiple scattering, momentum scale, etc.
- Agreement between photon conversions and nuclear interactions on the location and composition of materials gives us good confidence that the simulation geometry is an accurate representation of the real detector
- Uncertainties in the amount of material and its distribution are estimated to of order 5% (CMS PAS: TRK-10-003)



#### **Tracker dE/dx Simulation**





- Signal simulation in tracker includes charge propagation, charge collection efficiencies, saturation effects, and tracker noise modeling
  - tuned on cosmic data and early collisions
- detailed test of Geant4 descriptions of energy loss mechanisms in tracker material



#### **Charged particle multiplicity**





- Minimum Bias events
- Original Pythia 6.4 tunes largely divergent from Data distributions (tune D6T)
  - charged particle multiplicity very different
  - Surprising, given previous Tevatron studies

CMS PAS: TRK-10-001



#### **Charged particle multiplicity**





- Minimum Bias events
- Original Pythia 6.4 tunes largely divergent from Data distributions (tune D6T)
  - charged particle multiplicity very different
  - Surprising, given previous Tevatron studies

CMS PAS: TRK-10-001



## **Charged particle multiplicity**





- Minimum Bias events
- Original Pythia 6.4 tunes largely divergent from Data distributions (tune D6T)
  - charged particle multiplicity very different
  - Surprising, given previous Tevatron studies
- New Pythia 8, Tune 1 gives much better agreement
  - new: hard scattering in diffractive interactions
    - relative increase in population of high- $p_{\rm T}$ , "forward" regions

(15) 20 October, 2010

Mike Hildreth - CHEP 2010, Taipei, Taiwan

CMS PAS: TRK-10-005



#### **Electromagnetic Calorimeter Calibration**



- Based on expected  $\phi$  symmetry of energy deposition in minbias events
- Non-uniformity of response correction caused by inter-module gaps and different distributions of material in front of the calorimeter



• Here: response correction for each calorimeter module:



#### **Electromagnetic Interactions**



- Fraction of energy loss in the Ecal for different ranges in  $\eta$ :  $f_{\text{Brem}} = (p_{\text{in}} p_{\text{out}})/p_{\text{in}}$ 
  - inclusive distributions based on high-purity track selection
    - Gaussian Sum Filter track fit to account for energy loss



• MC Minbias events; again remarkable MC/Data agreement

CMS PAS: EGM-10-001

- depends on accurate modeling of:
  - material distributions
  - showers
  - correct distribution of particle types in Data and MC





## **Jet-Finding at CMS**



#### Calorimeter Jets • Jet-Plus-Track Jets (JPT) Jets clustered from ECAL and Subtract average calorimeter HCAL deposits (Calorimeter response from CaloJet and Towers) replace it with the track measurement Correspondingly: Calo MET Correspondingly: Tc MET HCAL • Particle Flow Jets (PF) Clusters neutral Ś detector hadron **Cluster derived Particle Flow** objects: unique list of calibrated EĆAL "particles" representing photon Clusters "generator level" information Tracks charged Correspondingly: PFMET particle-flow hadrons FCAL HCAL

Default jet clustering algorithm: Anti- $k_{\rm T}$  with R = 0.5



#### **Jet Variables**





#### **Jet Resolutions**





#### **Di-jet Asymmetry** Method:





#### Resolution as a function of average $p_{\rm T}$

- extrapolated to zero additional activity in each bin by measuring  $\sigma_{A}$  at decreasing values of the third
- same treatment applied to QCD MC
- within 10% agreement for all three jet algorithms
- validates combination of generators, material



## **Missing E<sub>T</sub>: Resolution Studies**



 MET provides a stringent test of noise simulation, showering, and resolution modeling ⇒ all elements have to be correct



- Here,  $\mathcal{E}_{T}$  resolution is measured using the width of the  $\mathcal{E}_{x}$ ,  $\mathcal{E}_{v}$  distributions
  - overall  $E_{\rm T}$  calibration from transverse energy balance in  $\gamma$ +jet events
  - at least two jets of  $p_{\rm T}$  > 25 GeV required
  - identical MC/Data treatment

CMS PAS: JME-10-004



## **Comparisons of Calorimeter Resolutions**





- Resolution of MET and H<sub>T</sub> (total jet transverse energy) for Calorimeter Jets and Particle Flow Jets
  - $H_{\rm T}$  potentially more robust
  - multi-jet events
    - leading jet  $p_{\rm T}$  > 40 GeV
  - width of central gaussian in  $\mathcal{M}_{\rm x}, \mathcal{M}_{\rm y}$  and  $\mathcal{E}_{\rm x}, \mathcal{E}_{\rm y}$
- Characterization of the non-Gaussian nature of the tails:
  - important for searches
  - plot shows width of data distributions (in sigma) containing nσ of a gaussian
  - deviation from gaussian form outside of  $2\sigma$



#### **Muon System**



- Energy deposition characterized by proper modeling of the absorber interaction lengths
  - punch-through, decays in flight account for much of the fakes
    - isolation variable critical to differentiate signal from QCD
  - future: significant backgrounds from neutron interactions



#### **Electroweak Distributions**



UNIVERSITY OF NOTRE DAME

**娄** Fermilab

- MET also well-modeled in W  $\rightarrow \mu\nu$  events



• Here: combination of intrnisic resolution and generator models

#### Conclusions



- "Tuning" of CMS Simulation has been a multi-year process
  - based on Test Beam data, extensive Cosmic running
  - improved by comparisons using collision data
    - no substitute for the real thing...
- "Validation" ongoing
  - continual refinement as the dataset grows
    - higher statistics comparisons possible for a growing number of studies
- Current (excellent) level of Data/MC agreement is a product of a huge amount of work over many years by many people
  - not an accident!

