
Geant4e Track
Extrapolation in the

(Super)Belle Experiment
Leo Piilonen, Virginia Tech
Nobu Katayama, KEK

on behalf of the Belle Collaboration

CHEP 2009

BELLE

!"#$%&'(%%

!"#$%&"

1

GEANT4E:
Error propagation for track

reconstruction inside the GEANT4

framework
Pedro Arce (CIEMAT)CHEP 2006, Mumbai, 13-17th February 2006

geant4e, a part of geant4, is used for covariance
propagation of charged tracks during event
reconstruction

BELLE

In (Super)Belle, use geant4e for track propagation and
muon identification during event reconstruction; only
forward propagation is done

geant4 model of the (Super)Belle detector:
 complete subdetector geometry
 non-uniform solenoidal magnetic field (~1.5 T)
 common geometry for geant4 and geant4e

µ+

µ−

K
−

π+
K

−
π+π+

π−

B1 → J/ψ K*0

K
−π+

µ+µ−

B2 → D+ π−

K
−π+π+

Charged track extrapolation using geant4e:
For each of 5 hypotheses ...
swim each track from outer edge of drift chamber to
calorimeter face [or muon detector face for]
store position, momentum and covariance matrix at
entrance/exit of selected volumes

e, µ, π, K, p

π

µ+

µ−

K
−

π+
K

−
π+π+

π−

B1 → J/ψ K*0

K
−π+

µ+µ−

B2 → D+ π−

K
−π+π+

BELLE

Muon identification using geant4e:
Swim track from outer edge of drift
chamber through muon detector (with
Kalman fitting to matching hits, if any)

We have two usage modes of geant4e:
for real events:

standalone
for simulated events:

in combination with geant4, since we do
simulation and reconstruction in one pass

But geant4e, as distributed, cannot coexist with geant4:
distinct particle lists
distinct physics processes
conflicting usage of common detector geometry
distinct states when calling RunManager
distinct user actions (SteppingAction etc)

We have resolved these issues ...

PhysicsList is a concrete implementation of
G4VUserPhysicsList, and must define:

• ConstructParticle()
• ConstructProcess()
• SetCuts()

geant4 and geant4e require different PhysicsLists.

Lots of overhead to change PhysicsList when
switching between geant4 and geant4e, so avoid this!

Particles and Physics Processes:

Define a combined PhysicsList
• ConstructParticle() defines gamma e+ e– mu+ mu–

pi+ pi– pi0 kaon+ kaon– kaon0 kaon0L kaon0S
proton anti_proton neutron anti_neutron geantino
chargedgeantino opticalphoton etc., as well as
g4e_e+ g4e_e– g4e_gamma g4e_mu+ g4e_mu–
g4e_proton g4e_pi+ g4e_pi– g4e_kaon+ g4e_kaon–
with PIDcode = 1000000000 + stdPIDcode

Particles and Physics Processes, cont’d:

Define a combined PhysicsList (cont’d)
• For standard particles, ConstructProcess() does

AddTransportation(), ConstructDecayProcess(),
ConstructEMProcess(), ConstructHadronicProcess(),
and ConstructOpticalPhotonProcess(), as appropriate

• For “g4e” particles, ConstructProcess() does only
AddTransportation() and ConstructEMProcess(); the
latter defines ionization energy loss as the sole
physics process for charged particles.

Particles and Physics Processes, cont’d:

Define a combined PhysicsList (cont’d)
• For standard particles, SetCuts() does

SetCutsWithDefault() using default = 1.0*mm
• For g4e particles, SetCuts() does

SetCutsWithDefault() using default = 1.0E9*cm

Particles and Physics Processes, cont’d:

SteppingManager in geant4 calls user code to process
steps through “sensitive” detector volumes and
record hits therein.
This behaviour is undesirable in the geant4e context.

For “g4e” particles, ConstructEMProcess() adds a new
NoHits() process:

Common Detector Geometry:

G4ParticleChange particleChange;
G4VParticleChange* NoHits::PostStepDoIt(const G4Track& track, const G4Step&)
{
 particleChange.Initialize(track);
 particleChange.ProposeSteppingControl(AvoidHitInvocation);
 return &particleChange;
}

Beyond the standard detector geometry, geant4e
prescribes a “target” surface: geant4e terminates
the track propagation when the track crosses this
surface.
The available surfaces are not adequate for our needs.

Duplicate then modify G4ErrorCylSurfaceTarget so
that it includes the cylinder endcaps.

geant4e “Target” Geometry:

During job initialization, detect presence of geant4
by non-empty G4PhysicalVolumeStore. If co-existing, do
G4StateManager::GetStateManager()–>SetNewState(G4State_Idle)
after InitGeant4e(), then save UserTrackingAction and
UserSteppingAction.

During processing of one event:
if (geant4e is running with geant4) {

hide UserTrackingAction and UserSteppingAction;
}
extrapolate all tracks in the event using “g4e” particles;
if (geant4e is running with geant4) {

restore UserTrackingAction and UserSteppingAction;
}

Distinct Run States and User Actions:

Duplicate and modify G4ErrorPropagationNavigator so
that it exhibits the geant4e behaviour during track
propagation

g4edata != 0 &&
g4edata–>GetState() == G4ErrorState_Propagating

or the geant4 behaviour otherwise.

G4**Navigator has two methods – ComputeStep and
ComputeSafety – to determine distance to volume
boundary. While geant4e is active, the distance to
the “target” surface is included in these calculations.

Distinct Run States, cont’d:

In the (Super)Belle software library, we have
succeeded in implementing geant4e for track
propagation and muon identification during event
reconstruction, either standalone or in conjunction
with geant4 event simulation:

merged particle list including “g4e” particles
distinct physics processes for “g4e” particles
no hit invocation in sensitive volumes for geant4e
distinct states and user actions during event
processing

Conclusion:

