Geant4e Track
Extrapolation in the
(Super)Belle Experiment

Leo Piilonen,Virginia Tech
Q%% Nobu Katayama, KEK

on behalf of the Belle Collaboration

©

D
O
BELLE

CHEP 2009

geant4e, a part of geant4, is used for covariance
propagation of charged tracks during event
reconstruction

r C o .

In (Super)Belle, use geant4e for track propagation and
muon identification during event reconstruction; only
forward propagation is done

1 A e
b Y A N |
o,
“‘x

geant4 model of the (Super)Belle detector:
@ complete subdetector geometry
@ non-uniform solenoidal magnetic field (~1.5T)
@ common geometry for geant4 and geant4e

Charged track extrapolation using geant4e:

4 For each of 5 hypotheses e, u, m, K, p ..
@ swim each track from outer edge of drift chamber to

calorimeter face [or muon detector face for 7]
M store position, momentum and covariance matrix at

entrance/exit of selected volumes

i

/

/

Muon identification using geant4e:

@ Swim track from outer edge of drift
chamber through muon detector (with

Kalman fitting to matching hits, if any)

We have two usage modes of geant4e:
™ for real events:
standalone
™ for simulated events:
in combination with geant4, since we do
simulation and reconstruction in one pass

But geantde, as distributed, cannot coexist with geant4:
O distinct particle lists
O distinct physics processes
O conflicting usage of common detector geometry
O distinct states when calling RunManager
O distinct user actions (SteppingAction etc)

We have resolved these issues ...

Particles and Physics Processes:

@ PhysicsList is a concrete implementation of
G4VUserPhysicsList, and must define:
* ConstructParticle()
* ConstructProcess()
* SetCuts()

O geant4 and geant4e require different PhysicsLists.

O Lots of overhead to change PhysicsList when
switching between geant4 and geant4e, so avoid this!

Particles and Physics Processes, cont’d:

@ Define a combined PhysicsList

e ConstructParticle() defines gamma e+ e— mu+ mu-

pi+ pi— pi0O kaon+ kaon— kaonO kaonOL kaonOS
proton anti_proton neutron anti_neutron geantino

chargedgeantino opticalphoton etc.,as well as
g4e_e+ g4e_e— g4e_gamma g4e_mu+ g4e_mu-
g4e proton g4e_pi+ g4e_pi—- g4e_kaon+ g4e_kaon-—
with PIDcode = 1000000000 + stdPIDcode

Particles and Physics Processes, cont’d:

@ Define a combined PhysicsList (contd)

* For standard particles, ConstructProcess() does
AddTransportation(), ConstructDecayProcess(),
ConstructEMProcess(), ConstructHadronicProcess(),

and ConstructOpticalPhotonProcess(), as appropriate

* For “gde” particles, ConstructProcess() does only
AddTransportation() and ConstructEMProcess(); the
latter defines ionization energy loss as the sole
physics process for charged particles.

Particles and Physics Processes, cont’d:

@ Define a combined PhysicsList (contd)
* For standard particles, SetCuts() does
SetCutsWithDefault() using default = 1.0*mm
* For g4e particles, SetCuts() does
SetCutsWithDefault() using default = 1.0E9*cm

Common Detector Geometry:

@ SteppingManager in geant4 calls user code to process
steps through “sensitive” detector volumes and
record hits therein.

O This behaviour is undesirable in the geant4e context.

o For “g4e” particles, ConstructEMProcess() adds a new

NoHits() process:

G4ParticleChange particleChange;
G4VParticleChange™ NoHits::PostStepDolt(const G4Trackée track, const G4Stepée)
{

particleChange.Initialize(track);

particleChange.ProposeSteppingControl(AvoidHitInvocation);

return &eparticleChange;

)

geant4e “Target” Geometry:

@ Beyond the standard detector geometry, geant4e
prescribes a “target” surface: geant4e terminates
the track propagation when the track crosses this
surface.

O The available surfaces are not adequate for our needs.

™ Duplicate then modify G4ErrorCylSurfaceTarget so
that it includes the cylinder endcaps.

Distinct Run States and User Actions:

@ During job initialization, detect presence of geant4
by non-empty G4PhysicalVolumeStore. If co-existing, do
G4StateManager::GetStateManager()—>SetNewState(G4State_Idle)
after InitGeant4e(), then save UserTrackingAction and

UserSteppingAction.

@ During processing of one event:

if (geant4e is running with geant4) {
hide UserTrackingAction and UserSteppingAction;

)

extrapolate all tracks in the event using “g4e” particles;

if (geant4e is running with geant4) {
restore UserTrackingAction and UserSteppingAction;

)

Distinct Run States, cont’d:

o Duplicate and modify G4ErrorPropagationNavigator so
that it exhibits the geant4e behaviour during track
propagation

g4edata = 0 &ede
g4edata—>GetState() == G4ErrorState_Propagating

or the geant4 behaviour otherwise.

G4**Navigator has two methods — ComputeStep and
ComputeSafety — to determine distance to volume
boundary. While geant4e is active, the distance to
the “target” surface is included in these calculations.

Conclusion:

In the (Super)Belle software library, we have
succeeded in implementing geant4e for track
propagation and muon identification during event
reconstruction, either standalone or in conjunction
with geant4 event simulation:

¥ merged particle list including “g4e” particles

d distinct physics processes for “g4e” particles

@ no hit invocation in sensitive volumes for geant4e

o distinct states and user actions during event
processing

