
Physics processes in general
CERN Geant4 User’s Workshop

November 11th–15th 2002
John Apostolakis

Derived from a talk by Marc Verderi
Ecole Polytechnique - LLR

12th November 2002 CERN Geant4 User's Workshop JA/MV 2

Introduction
Present the ingredients needed to understand
how to build a « physics list », which is the
physics setup:

It is the place where the user tells what particles,
processes and production cuts will be used in his/her
application;
This is a mandatory and critical user’s task;

We will go through several aspects regarding the
« heart » of GEANT4;

Present only the ‘theoretical’ aspect of processes:
Presentations on the ‘concrete’ processes follow;

12th November 2002 CERN Geant4 User's Workshop JA/MV 3

Categories involved
The ingredients presented
sit in these categories:

Particles
Track
Processes
We will show how they are
handled by the Tracking;

The « physics list »
interface sits in the Run
category.

12th November 2002 CERN Geant4 User's Workshop JA/MV 4

Layout

I. What is tracked;
Definition of particles;
G4Track;

II. The process interface;
G4VProcess;
How processes are used by the stepping;

III. The production cuts;
IV. Building the « physics lists ».
V. User-defined limits

I. What is tracked in GEANT4;

Speak about:
G4ParticleDefinition;
G4DynamicParticle;

G4Track;

12th November 2002 CERN Geant4 User's Workshop JA/MV 6

The particle types in GEANT4 are described by the
G4ParticleDefinition class;

Class defined in source/particles/management;

Describes the « intrisic » particle properties:
Mass, width, spin, lifetime…

Describes its « sensitivity » to physics:

G4ParticleDefinition

– This is realized by a G4ProcessManager;
– Attached to the G4ParticleDefinition;
– The G4ProcessManager manages the list

of processes the user wants the particle to
be sensitive to;

– Note that G4ParticleDefinition doesn’t
know by itself its sensitivity to physics.

G4ParticleDefinition

G4ProcessManager

Process_2

Process_3

Process_1

12th November 2002 CERN Geant4 User's Workshop JA/MV 7

G4ParticleDefinition is the base class for defining concrete
particles:

Several layers are defined:

G4ParticleDefinition

G4VLepton

G4VBoson

G4VMeson G4VBaryon

G4VIon

G4VShortLivedParticles

Concrete G4ParticleDefinition (1)

G4ParticleWithCuts

(Speak about later)

G4Electron

G4Geantino
G4PionPlus G4Proton

G4Alpha

12th November 2002 CERN Geant4 User's Workshop JA/MV 8

Concrete G4ParticleDefinition (2)
Most common particles, with lifetime large enough, are
implemented as static classes:

Like G4Electron, K0
S, gamma, pions, but also α…

To allow –say- electrons in the simulation, the following call
should be made in the « physics list »:

G4Electron::ElectronDefinition();

Heavy ions are created on the fly by processes;
Too many ions to have a class per ion !
An ion is tracked, and then its « ion type » disapears;
Ions are all created from the static class G4GenericIon. To allow
heavy ions in the simulation, you should call:

G4GenericIon::GenericIonDefinition();
Resonances (G4VShortLivedParticles) are also created on the fly.
Similar calls to the definitions (excited baryons, mesons …) should
be made.

12th November 2002 CERN Geant4 User's Workshop JA/MV 9

Example: G4Electron class (1)
Extract from source/particles/leptons/include/G4Electron.hh
class G4Electron : public G4VLepton

{
public:

static G4Electron* ElectronDefinition();
private: //hide constructor as private

G4Electron(
const G4String& aName, G4double mass,
G4double width, G4double charge,
G4int iSpin, G4int iParity,
G4int iConjugation, G4int iIsospin,
G4int iIsospin3, G4int gParity,
const G4String& pType, G4int lepton,
G4int baryon, G4int encoding,
G4bool stable, G4double lifetime,
G4DecayTable *decaytable);

private:
static G4Electron theElectron;

…
};

12th November 2002 CERN Geant4 User's Workshop JA/MV 10

Example: G4Electron class (2)
Extract from source/particles/leptons/src/G4Electron.cc
G4Electron::G4Electron(

const G4String& aName, G4double mass,
G4double width, G4double charge,
G4int iSpin, G4int iParity,
G4int iConjugation, G4int iIsospin,
G4int iIsospin3, G4int gParity,
const G4String& pType, G4int lepton,
G4int baryon, G4int encoding,
G4bool stable, G4double lifetime,
G4DecayTable *decaytable)

: G4VLepton(aName, mass, width, charge, iSpin, IParity,
iConjugation, iIsospin, iIsospin3, gParity, pType,

lepton, baryon, encoding, stable,l ifetime, decaytable)
{SetParticleSubType("e");}

G4Electron G4Electron::theElectron(
"e-", 0.51099906*MeV, 0.0*MeV, -1.*eplus,

1, 0, 0,
0, 0, 0,

"lepton", 1, 0, 11,
true, -1.0, NULL);

G4Electron* G4Electron::ElectronDefinition(){return &theElectron;}

12th November 2002 CERN Geant4 User's Workshop JA/MV 11

G4DynamicParticle
G4DynamicParticle describes the purely dynamic
part (ie no position, nor geometrical
information…) of the particle state:

Momentum, energy, polarization;
It hangs a G4ParticleDefinition pointer;
Retains eventual pre-assigned decay informations:

decay products;
lifetime;

Class defined in source/particles/management;

12th November 2002 CERN Geant4 User's Workshop JA/MV 12

G4Track

G4Track defines the class of
objects propagated by the
GEANT4 tracking;

Class defined in source/track;

The G4Track represents a
« snapshot » of the particle
state;
A G4Track object agregates:

A G4ParticleDefinition;
A G4ParticleDynamics;
Geometrical informations:

Position, current volume …
Track ID, parent ID;
process which created this
G4Track;

weigth, used for event biaising
technic;
…

A G4Track is tracked from its
birth until:

It is killed:
By an interaction
Or because it comes to rest,
and is stable;
Or, by a user’s action
(under his responsability !).

Or, it exits the world volume;

Class users need to be
familiar with !

12th November 2002 CERN Geant4 User's Workshop JA/MV 13

Summary view of
« What is tracked in GEANT4 »

G4Track

G4ParticleDefinition

G4DynamicParticle

G4ProcessManager

• Propagated by the tracking,
• Snapshot of the particle state.

• Momentum, pre-assigned decay…

• The « particle type »:
§ G4Electron,
§ G4PionPlus…

• « Hangs » the
physics sensitivity;

• The physics
processes;Process_2

Process_1

Process_3

• The classes involved in the building
the « physics list » are:
• The G4ParticleDefinition

concrete classes;
• The G4ProcessManager;
• The processes;

II. The process interface;

Speak about:
G4VProcess;

The Stepping;

12th November 2002 CERN Geant4 User's Workshop JA/MV 15

– PostStep actions:
• For describing point-like (inter)actions, like decay in flight, hard

radiation…

G4VProcess (1)
Abstract class defining the common interface of all
processes in GEANT4:

Used by all « physics » processes
but is also used by the transportation, etc…
Defined in source/processes/management

Define three kinds of actions:

– AlongStep actions:
• To describe continuous (inter)actions,

occurring along the path of the particle,
like ionisation;

– AtRest actions:
• Decay, e+ annihilation …

AlongStep

PostStep

12th November 2002 CERN Geant4 User's Workshop JA/MV 16

G4VProcess (2)
A process can implement any combination of the
three AtRest, AlongStep and PostStep actions:

Eg: decay = AtRest + PostStep

Each action defines two methods:
– GetPhysicalInteractionLength():

• Used to limit the step size:
– either because the process « triggers » an interaction, a decay;
– Or any other reasons, like fraction of energy loss;
– geometry boundary;
– user’s limit …

– DoIt():
• Implements the actual action to be applied on the track;
• And the related production of secondaries.

12th November 2002 CERN Geant4 User's Workshop JA/MV 17

G4VProcess (3)

The « action » methods are thus:
AtRestGetPhysicalInteractionLength(), AtRestDoIt();
AlongStepGetPhysicalInteractionLength(), AlongStepDoIt();
PostStepGetPhysicalInteractionLength(), PostStepDoIt();

A set of processes implementing given combinations of
actions exists:

G4VDiscreteProcess: only PostStep actions;
G4VContinuousDiscreteProcess: AlongStep + PostStep actions;
…

G4VProcess also defines the method:
G4bool IsApplicable(const G4ParticleDefinition &);
which returns « true » if the process is applicable to the given
particle type;

12th November 2002 CERN Geant4 User's Workshop JA/MV 18

G4VProcess & G4ProcessManager

In practice the G4ProcessManager retains three
vectors of actions:

One for the AtRest methods of the particle;
One for the AlongStep ones;
And one for the PostStep actions.

These are those vectors the user sets up in the
« physics list » and which are used by the
tracking.

12th November 2002 CERN Geant4 User's Workshop JA/MV 19

How the Stepping handles
processes

The stepping treats processes generically:
The stepping does not know what processes it is
handling;

The stepping imposes on the processes to
Cooperate in their AlongStep actions;
Compete for PostStep and AtRest actions;

Processes can optionally emit also a «signal» to require
particular treatment:

notForced: «standard» case;
forced: PostStepDoIt action is applied anyway;
conditionallyForced: PostStepDoIt applied if AlongStep has

limited the step;
More on this will be said in the session «Adding a new process»;

12th November 2002 CERN Geant4 User's Workshop JA/MV 20

Stepping Invocation Sequence of
Processes for a particle travelling

1. At the beginning of the step, determine the step length:
Consider all processes attached to the current G4Track;
Define the step length as the smallest of the lengths among:

All AlongStepGetPhysicalInteractionLenght()
All PostStepGetPhysicalInteractionLength()

2. Apply all AlongStepDoIt() actions, « at once »:
Changes computed from particle state at the beginning of the step;
Accumulated in the G4Step;
Then applied to the G4Track, from the G4Step.

3. Apply PostStepDoIt() action(s) « sequentially », as long as
the particle is alive:

Apply PostStepDoIt() of process which proposed the smallest step
length;
apply « forced » and « conditionally forced » actions.

12th November 2002 CERN Geant4 User's Workshop JA/MV 21

Stepping Invokation Sequence of
Processes for a Particle at Rest

1. If the particle is at rest, is stable and can’t
annihilate, it is killed by the tracking:

To be more accurate: if a particle at rest has no
« AtRest » actions defined, it is killed.

2. Otherwise determine the lifetime:
Take the smallest time among:

All AtRestGetPhysicalInteractionLenght()
Called «physical interaction length» but returns a time!

3. Apply the AtRestDoIt() action of the process
which returned the smallest time.

12th November 2002 CERN Geant4 User's Workshop JA/MV 22

Processes ordering
The Ordering of processes matters!
Ordering of following processes is critical:

Assuming n processes, the ordering of the
AlongGetPhysicalInteractionLength of the last processes
should be:

[n-2] …
[n-1] multiple scattering
[n] transportation

Why ?
Processes return a « true path length »;
The multiple scattering « virtually folds up » this
true path length into a shorter « geometrical »
path length;
Based on this new length, the transportation can
geometrically limit the step.

Ordering of most other process does not matter.

×

III. The production cuts;

Speak about:
Why production cuts are needed;

The cuts scheme in GEANT4

12th November 2002 CERN Geant4 User's Workshop JA/MV 24

The cuts in GEANT4

In GEANT4 there is no tracking cut:
Particles are tracked down to a zero range/kinetic energy;

Only production cuts exist;
ie cuts allowing a particle to born or not;

Why are production cuts needed ?
Some electromagnetic processes involve infrared divergences:

This leads to an infinity[huge number] of smaller and smaller energy
photons[electrons] (like in bremstrahlung, δ-ray productions);
Production cuts limit this production to particles above the threshold;
The remaining, divergent part is treated as a « net » continuous effect
(ie « AlongStep » action);

For other processes, production cuts can be an « option » to
speed-up the simulation.

12th November 2002 CERN Geant4 User's Workshop JA/MV 25

Range versus Energy production cuts
The production of a secondary particle is relevant if it can
be « visible » in the detector:

Ie produce a signal -say an energy deposition- visible compared to
the signal of the primary alone;

Range cut allows to easily define such visibility:
« I want to produce particles able to travel at least 1 mm; »
Criteria which can be applied uniformly accross the detector;

A cut of the same energy would lead to very different
ranges:

For the same particle type, depending on the material;
For the same material, depending on particle type;

Range cut has been adopted by GEANT4;
Actual input to cross-section is the energy threshold, but
the conversion range-energy is done automatically in
GEANT4;

12th November 2002 CERN Geant4 User's Workshop JA/MV 26

«Violations» of the production threshold
In some (many) cases, particles are produced, even if
they are below the production threshold;
This is intented to let the processes doing the « best »
they can;
This happens typically for:

Decays;
Positrons production:

In order to simulate the subsequent γ from the annihilation;
Hadronic processes:

Since no infrared divergences affect the cross-sections;

Note: these are not « hard-coded » exceptions, but is a
sophisticated, generic, mechanism of the tracking;

12th November 2002 CERN Geant4 User's Workshop JA/MV 27

How GEANT4 produces the
production cuts

The user specifies a range cut for each particle
‘type’

In the « physics list »;
This range cut is converted into energy cuts:

Each particle -G4ParticleWithCut- converts the range
cut into an energy cut, for each material;

Physics processes can then compute the cross-
section based on those energy cuts;
Done at initialization time;

12th November 2002 CERN Geant4 User's Workshop JA/MV 28

Relaxing the ‘unique’ range-cut
Today each particle type has a unique range-cut

One for electrons,
one for γ,

This ensures consistency
but is not optimal for applications in which the
accuracy of energy deposition varies greatly between
regions of the setup/detector.

We are developing functionality to relax the
restriction of a single cut

Allowing each range cut to be set for a region
In addition to the ‘global’/default range-cut

one for protons,
one for other particles

IV. Building the « physics list »;

Speak about:
G4VUserPhysicsList;

Concrete physics lists;

12th November 2002 CERN Geant4 User's Workshop JA/MV 30

G4VUserPhysicsList
It is one of the « mandatory user classes »;

Defined in source/run

Defines the three pure virtual methods:
ConstructParticles();
ConstructProcesses();
SetCuts();

Need to inherit from G4VUserPhysicsList to
implement a physics list;
(Note that a G4UserPhysicsListMessenger allows
to control interactively the physics list.)

12th November 2002 CERN Geant4 User's Workshop JA/MV 31

ConstructParticles() (1)
To get particle G4XXX, you need to invoke the static
method XXXDefinition() in your ConstructParticles()
method:

void MyPhysicsList::ConstructParticles()
{

G4XXX::XXXDefinition();
}

For example, to have electrons, positrons and gammas
only:

void MyPhysicsList::ConstructParticles()
{

G4Electron::ElectronDefinition();
G4Positron::PositronDefinition();
G4Gamma::GammaDefinition();

}

12th November 2002 CERN Geant4 User's Workshop JA/MV 32

ConstructParticles() (2)
Alternatively, some helper classes are provided:

G4BosonConstructor, G4LeptonConstructor
G4MesonConstructor, G4BaryonConstructor
G4IonConstructor, G4ShortlivedConstructor

You can use as:
G4BaryonConstructor baryonConstructor;
baryonConstructor.ConstructParticle();

Those helper classes are defined in source/particles/
bosons, leptons
hadrons/mesons, hadrons/barions
hadrons/ions, shortlived

12th November 2002 CERN Geant4 User's Workshop JA/MV 33

ConstructProcesses() the hard way
The class heavily used there is the G4ProcessManager:

Defined in source/processes/management
It is used to attach processes to particles;
And set their ordering;

Several ways to « add » a process:
AddProcess
AddRestProcess, AddDiscreteProcess, AddContinuousProcess

And to order AtRest/AlongStep/PostStep actions of
processes:

SetProcessOrdering
SetProcessOrderingToFirst, SetProcessOrderingToLast
(This is the ordering for the DoIt() methods, the GetPhysical-
InteractionLength() ones have the reverse order.)

Please review those G4ProcessManager methods !
Show now various examples.

12th November 2002 CERN Geant4 User's Workshop JA/MV 34

Helper method to add the transportation process:
void G4VUserPhysicsList::AddTransportation()
{

G4Transportation* theTransportationProcess= new G4Transportation();
// loop over all particles in G4ParticleTable
theParticleIterator->reset();
while((*theParticleIterator)()){

G4ParticleDefinition* particle = theParticleIterator->value();
G4ProcessManager* pmanager = particle->GetProcessManager();
if (!particle->IsShortLived()) {

// Add transportation process for all particles other than "shortlived"
if (pmanager == 0) {

// Error !! no process manager
G4Exception("G4VUserPhysicsList::AddTransportation : no process manager!");

} else {
// add transportation with ordering = (-1, "first", "first")
pmanager->AddProcess(theTransportationProcess);
pmanager->SetProcessOrderingToFirst(theTransportationProcess, idxAlongStep);
pmanager->SetProcessOrderingToFirst(theTransportationProcess, idxPostStep);

}
} else {

// shortlived particle case
}

}
}

Example 1: G4VUserPhysicsList::AddTransportation()

12th November 2002 CERN Geant4 User's Workshop JA/MV 35

Example 2: EM processes for gamma
Simple example of « discrete » processes: ie only PostStep
actions;

Show usage of helper function AddDiscreteProcess;
pmanager is the G4ProcessManager of the gamma;
Assume the transportation has been set by AddTransportation;

Code sample:
// Construct processes for gamma:
pmanager->AddDiscreteProcess(new G4GammaConversion());
pmanager->AddDiscreteProcess(new G4ComptonScattering());
pmanager->AddDiscreteProcess(new G4PhotoElectricEffect());

Simple case, where we don’t have to deal with processes
ordering (except for the transportation which has been set
to « first » elsewhere).
A more complicated case now…

12th November 2002 CERN Geant4 User's Workshop JA/MV 36

Example 3: EM processes for positrons
// Construct processes for positron
G4VProcess* theeplusMultipleScattering = new G4MultipleScattering();
G4VProcess* theeplusIonisation = new G4eIonisation();
G4VProcess* theeplusBremsstrahlung = new G4eBremsstrahlung();
G4VProcess* theeplusAnnihilation = new G4eplusAnnihilation();
// add processes
pmanager->AddProcess(theeplusMultipleScattering);
pmanager->AddProcess(theeplusIonisation);
pmanager->AddProcess(theeplusBremsstrahlung);
pmanager->AddProcess(theeplusAnnihilation);
// set ordering for AtRestDoIt
pmanager->SetProcessOrderingToFirst(theeplusAnnihilation, idxAtRest);
// set ordering for AlongStepDoIt
pmanager->SetProcessOrdering(theeplusMultipleScattering, idxAlongStep, 1);
pmanager->SetProcessOrdering(theeplusIonisation, idxAlongStep, 2);
// set ordering for PostStepDoIt
pmanager->SetProcessOrdering(theeplusMultipleScattering, idxPostStep, 1);
pmanager->SetProcessOrdering(theeplusIonisation, idxPostStep, 2);
pmanager->SetProcessOrdering(theeplusBremsstrahlung, idxPostStep, 3);
pmanager->SetProcessOrdering(theeplusAnnihilation, idxPostStep, 4);

12th November 2002 CERN Geant4 User's Workshop JA/MV 37

An alternative way to implement
particles and processes

It exists the G4VModularPhysicsList class:
Defined in source/run;
Which inherits from G4VUserPhysicsList;

Which makes use of a set of G4VPhysicsConstructor:
Defined in source/run;

G4VPhysicsConstructor defines the pure virtual methods:
ContructParticle();
ConstructProcess();
It is a kind of « sub-physics list », each of those implementing -
say- the EM physics only, the hadronics physics only, etc…

Allows to avoid all the physics definition in a single class;
Please see example/novice/N04

12th November 2002 CERN Geant4 User's Workshop JA/MV 38

For the best and newest way
to create the UserPhysicsList
See the presentation later today on
Hadronics Physics Lists,
It builds on the Modular Physics lists

‘Builders’ modularise further the creation of
Physics Lists

Accumulating physics models and processes for
a particular use case.

12th November 2002 CERN Geant4 User's Workshop JA/MV 39

SetCuts() (1)
This pure virtual method is used to define the cut range;
I will here talk only about the recommended way of setting
cuts:

Ie: same cut range for all particles;
Setting particle dependent cuts is possible but might be reserved to
advanced (perverted ? ;->) users.

The G4VUserPhysicsList base class has the protected
member:

protected:
G4double defaultCutValue;

Which is set to 1.0*mm in the constructor;

You can eventually change this value in an implementation
of SetCuts();
The helper G4VUserPhysicsList::SetCutsWithDefault method
implements the machinery to set the cuts using this
defaultCutValue value;

12th November 2002 CERN Geant4 User's Workshop JA/MV 40

SetCuts() (2)

A typical implementation of SetCuts() is then
simply:

void MyPhysicsList::SetCuts()
{

defaultCutValue = 1.0*mm;
SetCutsWithDefault();

}

V. User-defined limits;

Speak about:
G4UserLimit;

G4UserSpecialCuts process;

12th November 2002 CERN Geant4 User's Workshop JA/MV 42

G4UserLimit

This class allows to define the following limits in a
given G4LogicalVolume:

Maximum step size;
Maximum track length;
Maximum track time;
Minimun kinetic energy;
Minimum range;
Class defined in source/global/management

The user can inherit from G4UserLimit, or can
instanciate the default implementation;
The object has then to be set to the G4LogicalVolume;

12th November 2002 CERN Geant4 User's Workshop JA/MV 43

G4UserSpecialCuts

How to activate G4UserLimit ?
The maximum step size is automatically taken into
account by the stepping;

This is only the case for this G4UserLimit’s attribute;

For the other limits, the G4UserSpecialCuts process
(discrete process) can be set in the physics list;

Defined in source/processes/transportation

Or, a simple implementation of discrete process can be
done to deal with only the cuts the user is interested in;

12th November 2002 CERN Geant4 User's Workshop JA/MV 44

Conclusion
Creating the « physics list »

exposes, deliberately, the user to the choice of
physics (particles + processes) relevant to his/her
application;
is a critical & complex task

To assist users
The examples have been used as a starting point;
Then a modular structure was created;
Now a better, more structured, builder solution
has been created; see later talk (J.P. Wellisch).

Hypernews, email etc…, remain important to
exchange experiences and expertise !

