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Abstract

GEANT4 can realistically model the optics of scintillation and 
Cerenkov detectors. The simulation may commence with the 
propagation of a charged particle and end with the detection of 
the ensuing optical photons on photo sensitive areas, all within
the same event loop. The lecture will introduce this functionality 
and explain how it can be employed by the user
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Optical Photon Processes Optical Photon Processes 
in GEANT4in GEANT4

s Concept of “optical Photon” in G4

? >> atomic spacing

s G4OpticalPhoton: wave like nature of  EM

radiation

s G4OpticalPhoton <=|=> G4Gamma
(no smooth transition)

// optical photon

G4OpticalPhoton::OpticalPhoton();

s Define a (spin) vector for the photon, added 
as data member to the G4DynamicParticle 
description class:
aphoton->SetPolarization(ux,uy,uz); // unit vector!!!
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Optical photon production 
in Geant4

in /processes/electromagnetic/xrays

• Cerenkov Process
• Scintillation Process
• Transition Radiation

Geant4 catalogue of Processes 
at optical Wavelengths

in /processes/optical

• Refraction and Reflection at
medium boundaries

• Bulk Absorption
• Rayleigh scattering

ExampleN06 at /examples/novice/N06
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• The optical properties of the medium which are key
to the implementation of these types of processes
are stored as entries in a properties table linked to
the material.

• Properties are expressed as a function of the
photon’s momentum.

// Water

G4double a = 1.01*g/mole;
G4Element* elH = new G4Element(name=“Hydrogen”, symbol=“H”, z=1.,a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name=“Oxygen”,symbol=“O”,z=8.,a)

density = 1.0*g/cm3;
G4Material* Water = new G4Material(name=“Water”,density,nel=2);
Water -> AddElement(elH,2);
Water -> AddElement(elO,1);

const G4int NUMENTRIES = 32;

G4double ppckov[NUMENTRIES] = { 2.034*eV, ……, 4.136*eV};
G4double rindex[NUMENTRIES] = 1.3435, ……., 1.3608};
G4double absorption[NUMENTRIES] = 344.8*cm, ……., 1450.0*cm};

G4MaterialPropertiesTable *MPT = new G4MaterialPropertiesTable();

MPT -> AddProperty(“RINDEX”,ppckov,rindex,NUMENTRIES};
MPT -> AddProperty(“ABSLENGTH”,ppckov,absorption,NUMENTRIES};

water -> SetMaterialPropertiesTable(MPT);
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Cerenkov Process
• Cerenkov light occurs when a charged 

particle moves through a medium faster 
than the medium’s group velocity of light.

• Photons are emitted on the surface of a 
cone, and as the particle slows down:
(a) the cone angle decreases
(b) the emitted photon frequency increases
(c) and their number decreases

• Cerenkov photons have inherent 
polarization perpendicular to the cone’s 
surface.
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G4Cerenkov
Implementation Details

• Cerenkov photon origins are 
distributed rectilinear over the step 
even in the presence of a magnetic 
field

• Cerenkov photons are generated 
only in media where the user has 
provided an index of refraction

• An average number of photon is 
calculated for the wavelength 
interval in which the index of 
refraction is given
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in ExptPhysicsList:

#include “G4Cerenkov.hh”

G4Cerenkov* theCerenkovProcess = new G4Cerenkov(“Cerenkov”);

theCerenkovProcess -> SetTrackSecondariesFirst(true);

G4int MaxNumPhotons = 300;
theCerenkovProcess->SetMaxNumPhotonsPerStep(MaxNumPhotons);

• Suspend primary particle and track
Cerenkov photons first

• Set the average number of Cerenkov
photons per step (The actual number generated in
any given step will be slightly different because of the
statistical nature of the process)

User Options
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Scintillation Process

• Number of photons generated 
proportional to the energy lost 
during the step

• Emission spectrum sampled from 
empirical spectra

• Isotropic emission
• Uniform along the track segment
• With random linear polarization
• Emission time spectra with one 

exponential decay time constant.
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in ExptPhysicsList:

#include “G4Scintillation.hh”

G4Scintillation* theScintProcess = new G4Scintillation(“Scintillation”);

theScintProcess -> SetTrackSecondariesFirst(true);
theScintProcess -> SetScintillationYield(7500.0/MeV);
theScintProcess -> SetResolutionScale(1.0);
theScintProcess -> SetScintillationTime(45.*ns);

• Scintillation material has a characteristic
light yield

• The statistical yield fluctuation is either
broadened due to impurities for doped
crystals or narrower as a result of the
Fano Factor

• Suspend primary particle and track
scintillation photons first

G4Scintillation
Implementation Details

Note: Material properties are attached to the
process (and not the material). This means, at
present, GEANT4 can only accommodate one 
scintillation material in any given application
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#include “G4Material.hh

// Liquid Xenon

G4Element* elementXe = new G4Element(“Xenon”,”Xe”,54.,131.29*g/mole);

G4Material* LXe = new G4Material (“LXe”,3.02*g/cm3,1,kStateLiquid,
173.15*kelvin,1.5*atmosphere);

LXe -> AddElement(elementXe, 1);

const G4int NUMENTRIES = 9;

G4double LXe_PP[NUMENTRIES] = {6.6*eV,6.7*eV,6.8*eV,6.9*eV,7.0*eV,
7.1*eV,7.2*eV,7.3*eV,7.4*eV};

G4double LXe_SCINT[NUMENTRIES] = {0.000134, 0.004432, 0.053991,
0.241971, 0.398942, 0.000134, 0.004432, 0.053991,0.241971};

G4double LXe_RIND[NUMENTRIES] = { 1.57, 1.57, 1.57, 1.57, 1.57, 1.57,
1.57, 1.57, 1.57};

G4double LXe_ABSL[NUMENTRIES] = { 35.*cm, 35.*cm, 35.*cm, 35.*cm,
35.*cm, 35.*cm, 35.*cm, 35.*cm, 35*cm };

G4MaterialPropertiesTable* LXe_MPT = new G4MaterialPropertiesTable();

LXe_MPT -> AddProperty(“SCINTILLATION”,LXe_PP,
LXe_SCINT,NUMENTRIES);

LXe_MPT -> AddProperty(“RINDEX”, LXe_PP,LXe_RIND,NUMENTRIES);
LXe_MPT -> AddProperty(“ABSLENGTH”,LXe_PP,

LXe_ABSL,NUMENTRIES);

LXe -> SetMaterialPropertiesTable(LXe_MPT);
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G4Absorption
• Bulk Absorption - ‘kills’ the particle

MPT->AddProperty(“ABSLENGTH”,ppckov,abslength,NUMENTRIES};

Rayleigh Scattering
• The cross section is proportional to cos2(a),
where a is the angle between the initial and final
photon polarization.

• The scattered photon direction is perpendicular
to the new photon’s polarization in such a way
that the final direction, initial and final
polarization are all in one plane.

• Rayleigh scattering attenuation coefficient is
calculated for water following the Einstein-
Smoluchowski formula, but in all other cases it
must be provided by the user:

MPT -> AddProperty(“RAYLEIGH”,ppckov,scattering,NUMENTRIES}; 
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Boundary Process

• Dielectric - Dielectric
Depending on the photon’s wave length, 
angle of incidence, (linear) polarization, 
and refractive index on both sides of the 
boundary:

(a) total internal reflected
(b) Fresnel refracted
(c) Fresnel reflected

• Dielectric - Metal
(a) absorbed (detected)
(b) reflected
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G4BoundaryProcess
Implementation Details

• A ‘discrete process’, called at the end 
of every step

• never limits the step (done by the 
transportation)

• sets the ‘forced’ condition.
• Logic such that:
• preStepPoint: is still in the old volume 

postStepPoint: is already in the new volume

so information is available from both
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Surface Concept
Split into two classes
• Conceptual class: G4LogicalSurface (in the 

geometry category) holds:
(i) pointers to the relevant physical or logical

volumes
(ii) pointer to a G4OpticalSurface

These classes are stored in a table and can be 
retrieved by specifying:

(i) an ordered pair of physical volumes touching
at the surface [G4LogicalBorderSurface] - in
principle allows for different properties
depending on which direction the photon
arrives.

(ii) a logical volume entirely surrounded by this
surface [G4LogicalSkinSurface] - useful
when the volume is coded by a reflector and
placed into many volumes (limitation: only
one and the same optical property for all the
enclosed volume’s sides).

(b) Physical class: G4OpticalSurface (in the 
material category) keeps information about the 
physical properties of the surface itself.



15

G4OpticalSurface
• Set the simulation model used by the boundary 

process:
enum G4OpticalSurfaceModel {glisur, unfied};

GLISUR-Model: original G3 model
UNIFIED-Model: adopted from

DETECT (TRIUMF)
• Set the type of interface:

enum G4OpticalSurfaceType { dielectric_metal,
dielectric_dielectric};

• Set the surface finish:
enum G4OpticalSurfaceFinish {
polished, // smooth perfectly polished surface
polishedfrontpainted, // polished top-layer paint
polishedbackpainted, // polished (back) paint/foil
ground, // rough surface
groundfrontpainted, // rough top-layer paint
groundbackpainted }; // rough (back) paint/foil
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The assumption is that a rough 
surface is a collection of ‘micro-
facets’
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Surface effects

POLISHED: In the case where the surface between two bodies is 
perfectly polished, the normal used by the G4BoundaryProcess is the 
normal to the surface defined by:

(a) the daughter solid entered; or else
(b) the solid being left behind

GROUND: The incidence of a photon upon a rough surface requires 
choosing the angle, a, between a ‘micro-facet’ normal and that of the 
average surface. 

The UNIFIED model assumes that the probability of micro-facet 
normals populates the annulus of solid angle sin(a)da will be  
proportional to a gaussian of SigmaAlpha:

theOpSurface -> SetSigmaAlpha(0.1);

where sigma_alpha is in [rad]

In the GLISUR model this is indicated by the value of polish; when it is 
<1, then a random point is generated in a sphere of radius (1-polish), and 
the corresponding vector is added to the normal. The value 0 means 
maximum roughness with effective plane of reflection distributed as 
cos(a).

theOpSurface -> SetPolish(0.0);

The ‘facet normal’ is accepted if the refracted wave is still 
inside the original volume.
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F
F
F

In cases (b) and (c), multiple interactions 
with the boundary are possible within the
Process itself and without the need for 
relocation by the G4Navigator.   
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Csl: Reflection prob. about the normal of a micro facet
Css: Reflection prob. about the average surface normal
Cdl: Prob. of internal Lambertian reflection
Cbs: Prob. of reflection within a deep grove with the

ultimate result of exact back scattering. 
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The G4OpticalSurface also has a pointer to a 
G4MaterialPropertiesTable

In case the surface is painted, wrapped, or has a 
cladding, the table may include the thin layer’s 
index of refraction.

This allows the simulation of boundary effects both at the 
intersection between the medium and the surface layer, as 
well as the far side of the thin layer, all within the process 
itself and without invoking the G4Navigator; the thin layer 
does not have to be defined as a G4 tracking volume.
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G4LogicalVolume * volume_log;
G4VPhysicalVolume * volume1;
G4VPhysicalVolume * volume2;

// Surfaces

G4OpticalSurface* OpWaterSurface = new G4OpticalSurface(“WaterSurface”);

OpWaterSurface -> SetModel(glisur);
OpWaterSurface -> SetType(dielectric_metal);
OpWaterSurface -> SetFinish(polished);

G4LogicalBorderSurface* WaterSurface = new
G4LogicalBorderSurface(“WaterSurface”,volume1,volume2,OpWaterSurface);

G4OpticalSurface * OpAirSurface = new G4OpticalSurface(“AirSurface”);

OpAirSurface -> SetModel(unified);
OpAirSurface -> SetType(dielectric_dielectric);
OpAirSurface -> SetFinish(ground);

G4LogicalSkinSurface * AirSurface = new G4LogicalSkinSurface(“AirSurface”, 
volume_log,OpAirSurface);

Example
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G4OpticalSurface * OpWaterSurface = new G4OpticalSurface(“WaterSurface”);

OpWaterSurface -> SetModel(unified);
OpWaterSurface -> SetType(dielectric_dielectric);
OpWaterSurface -> SetFinish(groundbackpainted);

Const G4int NUM = 2;

G4double pp[NUM] = {2.038*eV, 4.144*eV};

G4double specularlobe[NUM] = {0.3, 0.3};
G4double specularspike[NUM] = {0.2, 0.2};
G4double backscatter[NUM] = {0.1, 0.1};

G4double rindex[NUM] = {1.35, 1.40};

G4double reflectivity[NUM] = {0.3, 0.5};
G4double efficiency[NUM] = {0.8, 1.0};

G4MaterialPropertiesTable *SMPT = new G4MaterialPropertiesTable();

SMPT -> AddProperty(“RINDEX”, pp, rindex, NUM);
SMPT -> 

AddProperty(“SPECULARLOBECONSTANT”,pp,specularlobe,NUM);
SMPT ->

AddProperty(“SPECULARSPIKECONSTANT”,pp,specularspike,NUM);
SMPT -> AddProperty(“BACKSCATTERCONSTANT”,pp,backscatter,NUM);
SMPT -> AddProperty(“REFLECTIVITY”,pp,reflectivity,NUM);
SMPT -> AddProperty(“EFFICIENCY”,pp,efficiency,NUM);

OpWaterSurface -> SetMaterialPropertiesTable(SMPT);
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The logic in G4OpBoundaryProcess:PostStepDoIt is as follows:

(1) Make sure:
(a) the photon is at a boundary (StepStatus = fGeomBoundary)
(b) the last step taken is not a very short step (StepLength

>=kCarTolerance/2) as it can happen upon reflection
ELSE do nothing and RETURN

(2) If the two media on either side are identical do nothing and
RETURN

(3) If the original medium had no G4MaterialPropertiesTable
defined kill the photon and RETURN
ELSE get the refractive index

(4) Get the refractive index for the medium on the other side of the
boundary, if there is one.

(5) See, if a G4LogicalSurface is defined between the two
volumes, if so get the G4OpticalSurface which contains
physical surface parameters.

(6) Default to glisur model and polished
surface

(7) If the new medium had a refractive index, set the surface type
to ‘dielectric-dielectric’
ELSEIF get the refractive index from the G4OpticalSurface
ELSE kill the photon.

(8) Use (as far as it has the information) G4OpticalSurface to

model the surface ELSE use Default.
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As a consequence:

(1) For polished interfaces between two media, no 
‘surface’ needs to be specified. All that is required is 
that the two media have an index of refraction stored 
in their respective G4MaterialPropertiesTable.

(2) The boundary process implementation is rigid 
about what it expects the G4Navigator does upon 
reflection on a boundary.

(3) G4BoundaryProcess with ‘surfaces’ is only 
possible for volumes that have been positioned by 
using placement rather than replica or parameterised 
volumes .
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ExampleN06


