
1

Cover Sheet

Optical Photon Processes in GEANT4
Peter Gumplinger, TRIUMF/GEANT4

(Presented by John Apostolakis)
Users’ Workshop at CERN, November 2002

Abstract

GEANT4 can realistically model the optics of scintillation and
Cerenkov detectors. The simulation may commence with the
propagation of a charged particle and end with the detection of
the ensuing optical photons on photo sensitive areas, all within
the same event loop. The lecture will introduce this functionality
and explain how it can be employed by the user

2

Optical Photon Processes Optical Photon Processes
in GEANT4in GEANT4

s Concept of “optical Photon” in G4

? >> atomic spacing

s G4OpticalPhoton: wave like nature of EM

radiation

s G4OpticalPhoton <=|=> G4Gamma
(no smooth transition)

// optical photon

G4OpticalPhoton::OpticalPhoton();

s Define a (spin) vector for the photon, added
as data member to the G4DynamicParticle
description class:
aphoton->SetPolarization(ux,uy,uz); // unit vector!!!

3

Optical photon production
in Geant4

in /processes/electromagnetic/xrays

• Cerenkov Process
• Scintillation Process
• Transition Radiation

Geant4 catalogue of Processes
at optical Wavelengths

in /processes/optical

• Refraction and Reflection at
medium boundaries

• Bulk Absorption
• Rayleigh scattering

ExampleN06 at /examples/novice/N06

4

• The optical properties of the medium which are key
to the implementation of these types of processes
are stored as entries in a properties table linked to
the material.

• Properties are expressed as a function of the
photon’s momentum.

// Water

G4double a = 1.01*g/mole;
G4Element* elH = new G4Element(name=“Hydrogen”, symbol=“H”, z=1.,a);
a = 16.00*g/mole;
G4Element* elO = new G4Element(name=“Oxygen”,symbol=“O”,z=8.,a)

density = 1.0*g/cm3;
G4Material* Water = new G4Material(name=“Water”,density,nel=2);
Water -> AddElement(elH,2);
Water -> AddElement(elO,1);

const G4int NUMENTRIES = 32;

G4double ppckov[NUMENTRIES] = { 2.034*eV, ……, 4.136*eV};
G4double rindex[NUMENTRIES] = 1.3435, ……., 1.3608};
G4double absorption[NUMENTRIES] = 344.8*cm, ……., 1450.0*cm};

G4MaterialPropertiesTable *MPT = new G4MaterialPropertiesTable();

MPT -> AddProperty(“RINDEX”,ppckov,rindex,NUMENTRIES};
MPT -> AddProperty(“ABSLENGTH”,ppckov,absorption,NUMENTRIES};

water -> SetMaterialPropertiesTable(MPT);

5

Cerenkov Process
• Cerenkov light occurs when a charged

particle moves through a medium faster
than the medium’s group velocity of light.

• Photons are emitted on the surface of a
cone, and as the particle slows down:
(a) the cone angle decreases
(b) the emitted photon frequency increases
(c) and their number decreases

• Cerenkov photons have inherent
polarization perpendicular to the cone’s
surface.

6

G4Cerenkov
Implementation Details

• Cerenkov photon origins are
distributed rectilinear over the step
even in the presence of a magnetic
field

• Cerenkov photons are generated
only in media where the user has
provided an index of refraction

• An average number of photon is
calculated for the wavelength
interval in which the index of
refraction is given

7

in ExptPhysicsList:

#include “G4Cerenkov.hh”

G4Cerenkov* theCerenkovProcess = new G4Cerenkov(“Cerenkov”);

theCerenkovProcess -> SetTrackSecondariesFirst(true);

G4int MaxNumPhotons = 300;
theCerenkovProcess->SetMaxNumPhotonsPerStep(MaxNumPhotons);

• Suspend primary particle and track
Cerenkov photons first

• Set the average number of Cerenkov
photons per step (The actual number generated in
any given step will be slightly different because of the
statistical nature of the process)

User Options

8

Scintillation Process

• Number of photons generated
proportional to the energy lost
during the step

• Emission spectrum sampled from
empirical spectra

• Isotropic emission
• Uniform along the track segment
• With random linear polarization
• Emission time spectra with one

exponential decay time constant.

9

in ExptPhysicsList:

#include “G4Scintillation.hh”

G4Scintillation* theScintProcess = new G4Scintillation(“Scintillation”);

theScintProcess -> SetTrackSecondariesFirst(true);
theScintProcess -> SetScintillationYield(7500.0/MeV);
theScintProcess -> SetResolutionScale(1.0);
theScintProcess -> SetScintillationTime(45.*ns);

• Scintillation material has a characteristic
light yield

• The statistical yield fluctuation is either
broadened due to impurities for doped
crystals or narrower as a result of the
Fano Factor

• Suspend primary particle and track
scintillation photons first

G4Scintillation
Implementation Details

Note: Material properties are attached to the
process (and not the material). This means, at
present, GEANT4 can only accommodate one
scintillation material in any given application

10

#include “G4Material.hh

// Liquid Xenon

G4Element* elementXe = new G4Element(“Xenon”,”Xe”,54.,131.29*g/mole);

G4Material* LXe = new G4Material (“LXe”,3.02*g/cm3,1,kStateLiquid,
173.15*kelvin,1.5*atmosphere);

LXe -> AddElement(elementXe, 1);

const G4int NUMENTRIES = 9;

G4double LXe_PP[NUMENTRIES] = {6.6*eV,6.7*eV,6.8*eV,6.9*eV,7.0*eV,
7.1*eV,7.2*eV,7.3*eV,7.4*eV};

G4double LXe_SCINT[NUMENTRIES] = {0.000134, 0.004432, 0.053991,
0.241971, 0.398942, 0.000134, 0.004432, 0.053991,0.241971};

G4double LXe_RIND[NUMENTRIES] = { 1.57, 1.57, 1.57, 1.57, 1.57, 1.57,
1.57, 1.57, 1.57};

G4double LXe_ABSL[NUMENTRIES] = { 35.*cm, 35.*cm, 35.*cm, 35.*cm,
35.*cm, 35.*cm, 35.*cm, 35.*cm, 35*cm };

G4MaterialPropertiesTable* LXe_MPT = new G4MaterialPropertiesTable();

LXe_MPT -> AddProperty(“SCINTILLATION”,LXe_PP,
LXe_SCINT,NUMENTRIES);

LXe_MPT -> AddProperty(“RINDEX”, LXe_PP,LXe_RIND,NUMENTRIES);
LXe_MPT -> AddProperty(“ABSLENGTH”,LXe_PP,

LXe_ABSL,NUMENTRIES);

LXe -> SetMaterialPropertiesTable(LXe_MPT);

11

G4Absorption
• Bulk Absorption - ‘kills’ the particle

MPT->AddProperty(“ABSLENGTH”,ppckov,abslength,NUMENTRIES};

Rayleigh Scattering
• The cross section is proportional to cos2(a),
where a is the angle between the initial and final
photon polarization.

• The scattered photon direction is perpendicular
to the new photon’s polarization in such a way
that the final direction, initial and final
polarization are all in one plane.

• Rayleigh scattering attenuation coefficient is
calculated for water following the Einstein-
Smoluchowski formula, but in all other cases it
must be provided by the user:

MPT -> AddProperty(“RAYLEIGH”,ppckov,scattering,NUMENTRIES};

12

Boundary Process

• Dielectric - Dielectric
Depending on the photon’s wave length,
angle of incidence, (linear) polarization,
and refractive index on both sides of the
boundary:

(a) total internal reflected
(b) Fresnel refracted
(c) Fresnel reflected

• Dielectric - Metal
(a) absorbed (detected)
(b) reflected

13

G4BoundaryProcess
Implementation Details

• A ‘discrete process’, called at the end
of every step

• never limits the step (done by the
transportation)

• sets the ‘forced’ condition.
• Logic such that:
• preStepPoint: is still in the old volume

postStepPoint: is already in the new volume

so information is available from both

14

Surface Concept
Split into two classes
• Conceptual class: G4LogicalSurface (in the

geometry category) holds:
(i) pointers to the relevant physical or logical

volumes
(ii) pointer to a G4OpticalSurface

These classes are stored in a table and can be
retrieved by specifying:

(i) an ordered pair of physical volumes touching
at the surface [G4LogicalBorderSurface] - in
principle allows for different properties
depending on which direction the photon
arrives.

(ii) a logical volume entirely surrounded by this
surface [G4LogicalSkinSurface] - useful
when the volume is coded by a reflector and
placed into many volumes (limitation: only
one and the same optical property for all the
enclosed volume’s sides).

(b) Physical class: G4OpticalSurface (in the
material category) keeps information about the
physical properties of the surface itself.

15

G4OpticalSurface
• Set the simulation model used by the boundary

process:
enum G4OpticalSurfaceModel {glisur, unfied};

GLISUR-Model: original G3 model
UNIFIED-Model: adopted from

DETECT (TRIUMF)
• Set the type of interface:

enum G4OpticalSurfaceType { dielectric_metal,
dielectric_dielectric};

• Set the surface finish:
enum G4OpticalSurfaceFinish {
polished, // smooth perfectly polished surface
polishedfrontpainted, // polished top-layer paint
polishedbackpainted, // polished (back) paint/foil
ground, // rough surface
groundfrontpainted, // rough top-layer paint
groundbackpainted }; // rough (back) paint/foil

16

The assumption is that a rough
surface is a collection of ‘micro-
facets’

17

Surface effects

POLISHED: In the case where the surface between two bodies is
perfectly polished, the normal used by the G4BoundaryProcess is the
normal to the surface defined by:

(a) the daughter solid entered; or else
(b) the solid being left behind

GROUND: The incidence of a photon upon a rough surface requires
choosing the angle, a, between a ‘micro-facet’ normal and that of the
average surface.

The UNIFIED model assumes that the probability of micro-facet
normals populates the annulus of solid angle sin(a)da will be
proportional to a gaussian of SigmaAlpha:

theOpSurface -> SetSigmaAlpha(0.1);

where sigma_alpha is in [rad]

In the GLISUR model this is indicated by the value of polish; when it is
<1, then a random point is generated in a sphere of radius (1-polish), and
the corresponding vector is added to the normal. The value 0 means
maximum roughness with effective plane of reflection distributed as
cos(a).

theOpSurface -> SetPolish(0.0);

The ‘facet normal’ is accepted if the refracted wave is still
inside the original volume.

18

F
F
F

In cases (b) and (c), multiple interactions
with the boundary are possible within the
Process itself and without the need for
relocation by the G4Navigator.

19

Csl: Reflection prob. about the normal of a micro facet
Css: Reflection prob. about the average surface normal
Cdl: Prob. of internal Lambertian reflection
Cbs: Prob. of reflection within a deep grove with the

ultimate result of exact back scattering.

20

The G4OpticalSurface also has a pointer to a
G4MaterialPropertiesTable

In case the surface is painted, wrapped, or has a
cladding, the table may include the thin layer’s
index of refraction.

This allows the simulation of boundary effects both at the
intersection between the medium and the surface layer, as
well as the far side of the thin layer, all within the process
itself and without invoking the G4Navigator; the thin layer
does not have to be defined as a G4 tracking volume.

21

G4LogicalVolume * volume_log;
G4VPhysicalVolume * volume1;
G4VPhysicalVolume * volume2;

// Surfaces

G4OpticalSurface* OpWaterSurface = new G4OpticalSurface(“WaterSurface”);

OpWaterSurface -> SetModel(glisur);
OpWaterSurface -> SetType(dielectric_metal);
OpWaterSurface -> SetFinish(polished);

G4LogicalBorderSurface* WaterSurface = new
G4LogicalBorderSurface(“WaterSurface”,volume1,volume2,OpWaterSurface);

G4OpticalSurface * OpAirSurface = new G4OpticalSurface(“AirSurface”);

OpAirSurface -> SetModel(unified);
OpAirSurface -> SetType(dielectric_dielectric);
OpAirSurface -> SetFinish(ground);

G4LogicalSkinSurface * AirSurface = new G4LogicalSkinSurface(“AirSurface”,
volume_log,OpAirSurface);

Example

22

G4OpticalSurface * OpWaterSurface = new G4OpticalSurface(“WaterSurface”);

OpWaterSurface -> SetModel(unified);
OpWaterSurface -> SetType(dielectric_dielectric);
OpWaterSurface -> SetFinish(groundbackpainted);

Const G4int NUM = 2;

G4double pp[NUM] = {2.038*eV, 4.144*eV};

G4double specularlobe[NUM] = {0.3, 0.3};
G4double specularspike[NUM] = {0.2, 0.2};
G4double backscatter[NUM] = {0.1, 0.1};

G4double rindex[NUM] = {1.35, 1.40};

G4double reflectivity[NUM] = {0.3, 0.5};
G4double efficiency[NUM] = {0.8, 1.0};

G4MaterialPropertiesTable *SMPT = new G4MaterialPropertiesTable();

SMPT -> AddProperty(“RINDEX”, pp, rindex, NUM);
SMPT ->

AddProperty(“SPECULARLOBECONSTANT”,pp,specularlobe,NUM);
SMPT ->

AddProperty(“SPECULARSPIKECONSTANT”,pp,specularspike,NUM);
SMPT -> AddProperty(“BACKSCATTERCONSTANT”,pp,backscatter,NUM);
SMPT -> AddProperty(“REFLECTIVITY”,pp,reflectivity,NUM);
SMPT -> AddProperty(“EFFICIENCY”,pp,efficiency,NUM);

OpWaterSurface -> SetMaterialPropertiesTable(SMPT);

23

The logic in G4OpBoundaryProcess:PostStepDoIt is as follows:

(1) Make sure:
(a) the photon is at a boundary (StepStatus = fGeomBoundary)
(b) the last step taken is not a very short step (StepLength

>=kCarTolerance/2) as it can happen upon reflection
ELSE do nothing and RETURN

(2) If the two media on either side are identical do nothing and
RETURN

(3) If the original medium had no G4MaterialPropertiesTable
defined kill the photon and RETURN
ELSE get the refractive index

(4) Get the refractive index for the medium on the other side of the
boundary, if there is one.

(5) See, if a G4LogicalSurface is defined between the two
volumes, if so get the G4OpticalSurface which contains
physical surface parameters.

(6) Default to glisur model and polished
surface

(7) If the new medium had a refractive index, set the surface type
to ‘dielectric-dielectric’
ELSEIF get the refractive index from the G4OpticalSurface
ELSE kill the photon.

(8) Use (as far as it has the information) G4OpticalSurface to

model the surface ELSE use Default.

24

As a consequence:

(1) For polished interfaces between two media, no
‘surface’ needs to be specified. All that is required is
that the two media have an index of refraction stored
in their respective G4MaterialPropertiesTable.

(2) The boundary process implementation is rigid
about what it expects the G4Navigator does upon
reflection on a boundary.

(3) G4BoundaryProcess with ‘surfaces’ is only
possible for volumes that have been positioned by
using placement rather than replica or parameterised
volumes .

25

ExampleN06

