
Geant4 Visualization
Getting Started

Jacek Generowicz
CERN IT/API

Jacek.Generowicz@cern.ch

Geant4 Users’ Workshop, CERN, 11 Nov 2002

 Requirements

 Geant4 visualization needs to be able to satisfy a variety of needs:

 Very quick response to survey successive events
 High-quality outputs for presentation and publication
 Impressive special effects for demonstration
 Flexible camera control for debugging geometry of detector components

and physics
 Interactive picking of graphical objects for attribute editing or feedback to

the associated data
 Highlighting collisions of physical volumes visually
 Remote visualization via the Internet

 Geant4 Visualization is able to respond to all these requirements...
 ... but difficult to do with a single bulit-in visualizer.

 Abstract Visualization Interface

 Solution: Geant4 provides an abstract interface to be used by different kinds

of graphcis systems.

 DAWNFILE
 DAWN-NetworkFukui
 HepRepFile
 OPACS
 OpenGL-Xlib
 OpenGL-Motif
 OpenGL-Win32
 OpenInventor-X
 OpenInventor-Win32
 RayTracer
 VRMLFILE
 VRML-Network
 (The red ones link against external libraries)

 In the hands-on examples you will use OpenGL-Xlib, and VRMLFILE.

 Compiling-in visualization code

 When Geant4 is being compiled, the preprocessor variables G4VIS_BUILD_*

are used to determine which of the systems will be made available.

 The configure script
 .../geant4/Configure -install
 asks which drivers should be supported, and sets the variables
 appropriately.

 When user code is being compiled, the preprocessor variables

G4VIS_USE_* are used to determine which systems shoud be used. The
values of these are taken from similarly named environment variables.

 NB. The preprocessor variable G4VIS_USE is defined if the environment

variable G4VIS_NONE is NOT set.

 Clearly, you will not be able to use systems which have not been compiled
 into your Geant4 libraries.

 Visualizing (with OpenGL)

 You must ensure that the environment variable OGLHOME points at the
 directory containing the OpenGL libraries. Either libMesa* or libGL* will do.

 You must write your own Visualization Manager.
 It must be derived from G4VisManager
 It must implement the method
 RegisterGraphicsSystems()

 Start by using MyVisManager, a sample implementation which can be
 found in the directory visualization/management/include

 Note how the preprocessor variables are used in this class:
 #ifdef G4VIS_USE_OPENGLX
 RegisterGraphicsSystem (new G4OpenGLImmediateX);
 RegisterGraphicsSystem (new G4OpenGLStoredX);
 #endif

 Instantiating the VisManager

 int main(...) {
 ...
 #ifdef G4VIS_USE
 // Your Visualization Manager
 #include "MyVisManager.hh"
 #endif ...
 #ifdef G4VIS_USE
 // Instantiation and initialization of the
 // Visualization Manager
 G4VisManager* visManager = new MyVisManager;
 visManager -> initialize ();
 #endif ...
 #ifdef G4VIS_USE
 delete visManager;
 #endif ...
 }

 Scenes, Handlers and Viewers

 A scene is a set of visualizable objects, such as detector components, hits,

trajectories, axes, etc.

 A scene handler is a graphics-data modeler, which processes raw data in a

scene for later visualization.

 A viewer generates output based on data processed by a scene handler.

 Visualization steps

 The typical steps of performing Geant4 visualization are:
 Create a scene handler and a viewer.
 /vis/sceneHandler/create OGLIX
 /vis/viewer/create (default: current scene handler)
 Create an empty scene.
 /vis/scene/create (this scene becomes current)
 Add raw 3D data to the created scene.
 /vis/scene/add/volume (default: world)
 /vis/scene/add/axes
 Attach the current scene handler to the current scene.
 /vis/sceneHandler/attach (default: current scene)
 Set camera parameters, drawing style (wireframe/surface), etc.
 /vis/viewer/set/viewpointThetaPhi 30 30
 Make the viewer execute visualization.
 Declare the end of visualization for flushing.
 /vis/viewer/flush
 Full description of all vis commands can be found in
 /geant4/source/visualization/README.built_in_commands

 Miscellaneous

 Trajectory storage is switched on with the command
 /tracking/storeTrajectory 1

 Be sure to have a look at the macro files (.mac) in the examples
 directories.

 In particular, look at
 geant4/examples/novice/N03/visTutor
 which contains didactic examples of visualization macro files.

 Visualization Attributes

 Visualization attributes are data associated with visualizable objects,
 which are only relevant to visualization. These are data which do not play
 any part in the simulation itself.

 For example:
 colour
 visibility
 line style

 Visualization attributes may be set for specific objects ...
 ... otherwise, default values will be applied.

 Attributes are held in an instance of the class G4VisAttributes which
 is defined in the category graphics_reps.

 Setting Attributes

 Let’s look at how some attributes are set.

 Visibility has only 2 states: visible/invisible.

 Set it using the method
 void G4VisAttributes::SetVisibility(G4bool visibility);

 Colour has an (almost) infinite number of states.
 Use the G4Color class.
 Its instances store 4 values repersenting the red, green, blue and alpha
 components of the colour. Each value should be in the range [0,1].
 All values default to 1. (Some drivers ignore alpha.)
 Two spellings of the class name are available:
 G4Colour red(1.0, 0.0, 0.0);
 G4Color blue(0.0, 0.0, 1.0);
 Set it using the methods
 void G4VisAttributes::SetColor (const G4Color color);
 void G4VisAttributes::SetColour(const G4Colour colour);

 Assigning Attributes

 // Instantiate a logical volume
 myTargetLog = new G4LogicalVolume(myTargetTube, BGO, "TLog", 0, 0, 0);

 // Instantiate vis attributes, make the colour cyan immediately
 G4VisAttributes* calTubeVisAtt = new G4VisAttributes(G4Colour(0,1,1));

 // Use wireframe style
 calTubeVisAtt -> SetForceWireframe(true);
 // Assign the attributes to your volume
 myTargetLog -> SetVisAttributes(calTubeVisAtt);

 The lifetime of the vis attributes must be at least as long as the objects
 to which they are assigned.
 It is the user’s responsibility to ensure this, and to delete them when
 they are no longer needed.

 Quickstart Summary

 Make sure your OpenGL libraries have been compiled in.
 Make sure the appropriate environment variables point to the libraries.
 Make sure to create scenes, handlers and viewers. (Consider using the

compound command /vis/open).
 Make sure to flush the viewer.
 Go forth and visualize ...

