
Fast SimulationFast Simulation

A shortcut to the tracking

LayoutLayout

I. Introduction:
– Generalities
– Parameterisation Features

II. Fast Simulation Components of Geant4:
– G4VFastSimulationModel
– Binding concrete models to an envelope
– G4FastSimulationManagerProcess
– Summary Picture of Fast Simulation Mechanism

III. Fast Simulation using Ghost Volumes
IV. Example

M5 unit1

I. IntroductionIntroduction

GeneralitiesGeneralities

• Fast Simulation, also called parameterisation,
is a shortcut to the tracking.

• Fast Simulation allows you to take over the
tracking to implement your own fast physics
and detector response.

• The classical use case of fast simulation is
the shower parameterisation where the
typically several thousand steps per GeV
computed by the tracking are replaced by a
few ten of deposits per GeV.

• Parameterisations are generally experiment
dependent.

Parameterisation featuresParameterisation features

• Parameterisations take
place in an envelope.
This is typically the
mother volume of a
sub-system or of a large
module of such a sub-
system.

• Parameterisations are
often particle type
dependent and/or may
apply only to some.

• They are often not
applied in complicated
regions.

II. Fast Simulation Components Fast Simulation Components
of Geant4of Geant4

G4VFastSimulationModelG4VFastSimulationModel
• This is the base class allowing to implement concrete

parameterisation models.
• It has three pure virtual methods to be overriden :

– G4bool IsApplicable(const G4ParticleDefinition *)
• Which specify for which particles the model is valid

– G4bool ModelTrigger(const G4FastTrack &)
• Which allow to decide or not to trigger the model at the current point, in

order to avoid to trigger in a « complicated region ».
– void DoIt(const G4FastTrack &, G4FastStep &)

• Which is the parameterisation properly said, invoked when the mo del
has triggered.

• The G4FastTrack provides input information to the model
(G4Track, envelope information, …).

• The G4FastStep allows to return the state of the G4Track after
parameterisation (alive/killed, position, …) and potential
secondaries back to the tracking.

Binding concrete modelsBinding concrete models
to an envelopeto an envelope

• Concrete models are bound to the
envelope through a G4Fast-
SimulationManager object.

• This allows several models to be
bound to a same envelope.

• The « envelope » is simply a
G4LogicalVolume which has
received a G4FastSimulation-
Manager.

• All its [grand[…]]daughters will be
sensitive to the parameterisations.

G4FastSimulationManager

ModelForElectrons

ModelForPions

« envelope »
(G4LogicalVolume)

G4FastSimulationManagerProcessG4FastSimulationManagerProcess

• The G4FastSimulationManagerProcess is a process
providing the interface between the tracking and the
fast simulation.

• It has to be set to the particles to be parameterised:
– The process ordering is the following:

[n-3] …
[n-2] Multiple Scattering
[n-1] G4FastSimulationManagerProcess
[n] G4Transportation

– It can be set as a discrete process or it must be set as a
continuous & discrete process if using ghost volumes (treated
later on in this unit).

Summary Picture of Fast Summary Picture of Fast
Simulation MechanismSimulation Mechanism

• The Fast Simulation components
are indicated in blue.

• When the G4Track travels inside the
volume of the envelope, the G4FSMP
looks for a G4FastSimulationManager.

• If one exists, at the beginnig of each
step in the envelope, the models are
messaged to check for a trigger.

• In case a trigger is issued, the model
is applied at the point the G4track is.

• Otherwise, the tracking proceeds with
a normal step.

G4FastSimulationManager

ModelForElectrons

ModelForPions

« envelope »
(G4LogicalVolume)

Multiple Scattering

G4Transportation

G4FastSimulationManagerProcess

Process xxx

G4Track

G4ProcessManager

Placements

III. Fast Simulation using Ghost Fast Simulation using Ghost
VolumesVolumes

Ghost VolumesGhost Volumes (1)

• Ghost volumes allow to define envelopes indepen-
dently of the volumes of the tracking geometry.

• This allows to group together the electromagnetic
and hadronic calorimeters for pion parameterisation
for example or to define envelopes for geometries
coming out of a CAD system which don’t have a
hierarchical structure.

• In addition Ghost volumes are sensitive the to
particle flavor, allowing to define in a completely
independant way envelopes for electrons, envelopes
for pion etc…

Ghost VolumesGhost Volumes (2)

• Ghost Volumes of a given particle flavor are placed in a
clone of the world volume for tracking.

• This is done automatically by a singleton class: the
G4GlobalFastSimulationManager.

• The G4FastSimulationManagerProcess provides the
additional navigation inside this « parallel » geometry.

• This navigation is done transparently to the user.
• As before, when a parameterisation model attached to a

ghost volume issues a trigger, the parameterisation is
applied, taking over the tracking.

IV. Example (1)Example (1)

• Show sample code extracted from
example/novice/N05;

• Simulate a (very crude L) EM shower:
– Valid for electrons and gammas;
– Triggering above 100 MeV;
– Show in particular a way to collect « hits »

created by the parameterisation;

IV. Example (2)Example (2)

G4bool ExN05EMShowerModel::IsApplicable(const G4ParticleDefinition&
particleType)
{
return
&particleType == G4Electron::ElectronDefinition() ||
&particleType == G4Positron::PositronDefinition() ||
&particleType == G4Gamma::GammaDefinition();

}

G4bool ExN05EMShowerModel::ModelTrigger(const G4FastTrack&
fastTrack)
{
// Applies the parameterisation above 100 MeV:
return fastTrack.GetPrimaryTrack()->GetKineticEnergy() > 100*MeV;

}

IV. Example (3)Example (3)
void ExN05EMShowerModel::DoIt(const G4FastTrack& fastTrack,

G4FastStep& fastStep)
{
G4cout << "ExN05EMShowerModel::DoIt" << G4endl;

// Kill the parameterised particle:
fastStep.KillPrimaryTrack();
fastStep.SetPrimaryTrackPathLength(0.0);
fastStep.SetTotalEnergyDeposited(fastTrack.GetPrimaryTrack()->

GetKineticEnergy());

// split into "energy spots" energy according to the shower shape:
Explode(fastTrack); // Energy spot = (x, y, z, E)

// and put those energy spots into the crystals:
BuildDetectorResponse();

}

IV. Example (4)Example (4)
• To set « energy spot » in sensitive volume, mimic the

stepping part regarding hits creation:

void ExN05EMShowerModel::AssignSpotAndCallHit(const ExN05EnergySpot &eSpot)
{

// "converts" the energy spot into the fake G4Step to pass to sensitive detector:
FillFakeStep(eSpot);
// call sensitive part: taken/adapted from the stepping:
// Send G4Step information to Hit/Dig if the volume is sensitive
G4VPhysicalVolume* pCurrentVolume =

fFakeStep->GetPreStepPoint()->GetPhysicalVolume();
G4VSensitiveDetector* pSensitive;

if(pCurrentVolume != 0) {
pSensitive = pCurrentVolume->GetLogicalVolume()->
GetSensitiveDetector();

if(pSensitive != 0) pSensitive->Hit(fFakeStep);
}

}

