
Detector Description:

Visualization Attributes
Optimisation & Debugging techniques

http://cern.ch/geant4

•  Visualization attributes
•  GGE & geometry tree

PART IV

Detector Description: Visualization, optimisation & debugging - Geant4 Course 3

  Each logical volume can have associated a
G4VisAttributes object
  Visibility, visibility of daughter volumes
  Color, line style, line width
  Force flag to wire-frame or solid-style mode

  For parameterised volumes, attributes can be
dynamically assigned to the logical volume

  Lifetime of visualization attributes must be at
least as long as the objects they’re assigned to

Detector Description: Visualization, optimisation & debugging - Geant4 Course 4

  Each G4VHit concrete class must have an
implementation of Draw() method.
  Colored marker
  Colored solid
  Change the color of detector element

  G4Trajectory class has a Draw() method.
  Blue : positive
  Green : neutral
  Red : negative
  You can implement alternatives by yourself

Detector Description: Visualization, optimisation & debugging - Geant4 Course 5

  Implemented in JAVA, GGE is a graphical
geometry editor compliant to Geant4. It allows
to:
  Describe a detector geometry including:

•  materials, solids, logical volumes, placements
  Graphically visualize the detector geometry using a

Geant4 supported visualization system, e.g. DAWN
  Store persistently the detector description
  Generate the C++ code according to the Geant4

specifications

  GGE is provided as a separate tool in Geant4
  As part of the MOMO Java environment suite
  geant4/environments/MOMO/MOMO.jar

Detector Description: Visualization, optimisation & debugging - Geant4 Course 6

  Built-in commands defined to display the
hierarchical geometry tree
  As simple ASCII text structure
  Graphical through GUI (combined with GAG)
  As XML exportable format

  Implemented in the visualization module
  As an additional graphics driver

  G3 DTREE capabilities provided and more

Detector Description: Visualization, optimisation & debugging -
Geant4 Course 7

•  Smart voxels

PART IV

Detector Description: Visualization, optimisation & debugging - Geant4 Course 9

  For each mother volume
  a one-dimensional virtual division is performed

•  the virtual division is along a chosen axis
•  the axis is chosen by using an heuristic

  Subdivisions (slices) containing same volumes are gathered into
one

  Subdivisions containing many volumes are refined
•  applying a virtual division again using a second Cartesian axis
•  the third axis can be used for a further refinement, in case

  Smart voxels are computed at initialisation time
  When the detector geometry is closed
  Do not require large memory or computing resources
  At tracking time, searching is done in a hierarchy of virtual

divisions

Detector Description: Visualization, optimisation & debugging - Geant4 Course 10

  Some geometry topologies may require ‘special’
tuning for ideal and efficient optimisation
  for example: a dense nucleus of volumes included in

very large mother volume

  Granularity of voxelisation can be explicitly set
 Methods Set/GetSmartless() from G4LogicalVolume

  Critical regions for optimisation can be detected
  Helper class G4SmartVoxelStat for monitoring time spent in

detector geometry optimisation
•  Automatically activated if /run/verbose greater than 1

 Percent Memory Heads Nodes Pointers Total CPU Volume
 ------- ------ ----- ----- -------- --------- -----------
 91.70 1k 1 50 50 0.00 Calorimeter
 8.30 0k 1 3 4 0.00 Layer

Detector Description: Visualization, optimisation & debugging - Geant4 Course 11

  The computed voxel structure can be visualized
with the final detector geometry
 Helper class G4DrawVoxels
 Visualize voxels given a logical volume

•  G4DrawVoxels::DrawVoxels(const G4LogicalVolume*)

 Allows setting of visualization attributes for
voxels
•  G4DrawVoxels::SetVoxelsVisAttributes(…)

 useful for debugging purposes
 Can also be done through a visualization

command at run-time:
•  /vis/scene/add/logicalVolume <logical-volume-name> [<depth>]

Detector Description: Visualization, optimisation & debugging - Geant4 Course 12

  Detector regions may be excluded from
optimisation (ex. for debug purposes)
  Optional argument in constructor of G4LogicalVolume or

through provided set methods
•  SetOptimisation/IsToOptimise()

  Optimisation is turned on by default

  Optimisation for parameterised volumes can be
chosen
  Along one single Cartesian axis

•  Specifying the axis in the constructor for G4PVParameterised

  Using 3D voxelisation along the 3 Cartesian axes
•  Specifying in kUndefined in the constructor for G4PVParameterised

Debugging tools

•  Optional checks at Construction

•  DAVID

•  Run-time commands

•  OLAP

PART IV

  An overlapping volume is a contained volume which
actually protrudes from its mother volume
  Volumes are also often positioned in a same volume with the

intent of not provoking intersections between themselves.
When volumes in a common mother actually intersect
themselves are defined as overlapping

  Geant4 does not allow for malformed geometries
  The problem of detecting overlaps between volumes is

bounded by the complexity of the solid models description
  Utilities are provided for detecting wrong positioning

  Graphical tools
  Kernel run-time commands

protruding overlapping

14 Detector Description: Visualization, optimisation & debugging - Geant4 Course

  Constructors of G4PVPlacement and G4PVParameterised have an
optional argument pSurfChk:
G4PVPlacement(G4RotationMatrix* pRot, …, G4bool pSurfChk=false);

  If this flag is true, overlap check is done at construction
  A number of points (1000 by default) are randomly sampled on the surface

of the volume being created
  Each of these points are examined

•  if outside of the mother volume, or
•  if inside of already existing other volumes in the same mother volume

  NOTE: this check may requires lots of CPU time

  Depending on the complexity of geometry

  Can also be forced on a specific physical volume though the method:
G4bool CheckOverlaps(G4int points=1000, G4double tol=0, G4bool verbose=true);

  Worth to try when first implementing a geometry of some complexity !

15 Detector Description: Visualization, optimisation & debugging - Geant4 Course

  DAVID is a graphical debugging tool for
detecting potential intersections of volumes

  Accuracy of the graphical representation can
be tuned to the exact geometrical
description.
  physical-volume surfaces are automatically

decomposed into 3D polygons
  intersections of the generated polygons are

parsed.
  If a polygon intersects with another one, the

physical volumes associated to these polygons
are highlighted in color (red is the default).

  DAVID can be downloaded from the Web as
external tool for Geant4
  http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html

16 Detector Description: Visualization, optimisation & debugging - Geant4 Course

  Built-in run-time commands to activate verification tests
for the user geometry. Tests can be applied recursively to
all depth levels (may require CPU time!): [recursion_flag]

geometry/test/run [recursion_flag] or
geometry/test/grid_test [recursion_flag]
  to start verification of geometry for overlapping regions based on

a standard grid setup
geometry/test/cylinder_test [recursion_flag]
  shoots lines according to a cylindrical pattern
geometry/test/line_test [recursion_flag]
  to shoot a line along a specified direction and position
geometry/test/position and geometry/test/direction
  to specify position & direction for the line_test

  Resolution/dimensions of grid/cylinders can be tuned
17 Detector Description: Visualization, optimisation & debugging - Geant4 Course

  Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes
 The volumes Tracker[0] and Overlap[0],
 both daughters of volume World[0],
 appear to overlap at the following points in global coordinates: (list truncated)‏
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 240 -240 -145.5 -145.5 0 -145.5 -145.5
Which in the mother coordinate system are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .
Which in the coordinate system of Tracker[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .
Which in the coordinate system of Overlap[0] are:
 length (cm) ----- start position (cm) ----- ----- end position (cm) -----
 . . .

18 Detector Description: Visualization, optimisation & debugging - Geant4 Course

 Adopt tracking of neutral particles to verify
boundary crossing in opposite directions

 Stand-alone batch application
  Provided as extended example
  Can be combined with a graphical environment

and GUI
  ex. Qt library

  Integrated in the CMS Iguana Framework

19 Detector Description: Visualization, optimisation & debugging - Geant4 Course

20 Detector Description: Visualization, optimisation & debugging - Geant4 Course

