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GHAD ValidationersVerificatiorn (3.1)

= Our validation strategy is deployed since spring 1999. It was
also submitted as paper to CHEP2001 at the time of the last
review. My apologies for not having presented it last time.

m [t was subsequently presented again in CMS and ATLAS, at
the LHC-geant4 validation meeting, and the recent ACAT
conference in Moscow.

m | would have been pleased to also present it in invited talks at
the SATIF workshop, and the IDM2002 workshop, but | had to
turn these down due to lack of travel-money at CERN.
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‘Model validation

m Four tier strategy

s Author validation plots for the individual models
= Precondition for model to be a candidate for inclusion.

s [ndependent validation on thin target data with

regression suites by the working groups
= Verified before every release

m Independent validation on benchmarks, where
these are available

= Verified before every release, where possible
m Validation on full simulation programs

= geant4 takes model validation much more
seriously than it was in the times of geant3.
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Author validation

m Author validation

s Comparisons, typically with measurements from
thin target data; I.e. event generator like
application.

m Looking at cross-sections, particle yields and
distribution, ta and pt distributions, invariant
cross-sections, xf distributions, particle rations,
etc..

m Requested by the working group when mayor
changes to a model occur.

s Owned by the author, like the test-beam result of:
an experimental group
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Working group validation

m Working group validation suites

m For eta, pt, xf, mult, d3o/d3p, do/dT, n_prong,
charge ratlos dcr/deE etc. in place for the
various energy regimes. Is already quite
satisfactory.

m [rivial quantities now also are checked.

m Note that this can be done only with the
consent of the author.

m [his level of validation was never performed in
any depth for geants3.
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Proton antiproton annihilation at rest

points: pp data
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Anti proton annihilation
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Proton antiproton annihilation at rest
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Stoppinyg pion minus
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Low! energy newtron captyre
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Doppler broadening
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Newtron induced isotope production
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[sotope
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roton induced reactions
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mucleon phi distr, piglus of 50MeY, 2GaVY, 10GaY, 4005y
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More phi’ distributions (ir lead)
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2GeV piminus in PRWCGS

( E 4 ) [ I 1099000
Trivial’ plots oo
hS 239.4

W YR
CF 0.000

erteryy deposition U

2GeY piplus in PEWG4

o] 1000000
Entries 2000
Mean 1485,

Ri= 2439
FLW Q.000
Lt 2,000

ajuia] 1204 1200 1400 1B8o0 1800

1o} 1009200
Entries 2000
Mean 2944,
600 B8O jiviviy) 1200 1400 1ERR 1800 2000 2200 RMS 352.8
Em UDFLW Q.000 2GeV protons in PW0 4

OWFLY 0.000 [5) 1000090

Entries 2000

Mean 1352,
RHS 223.4

OFLw 0.099
| ek 0.000

H 2GeY anti—protons In PEWO4
PR 1 T T T T T T T R T S T | A

BTEV: All distributions are
in the expected energy range

2000 2250 2800 Z7B0 3000 3ZH0 3500 3750 4000

CERN/EP/SFT =

PR S S A SR AR R R
1900 1200 1400 1600 1800




Validation in complete applications

s [ndependent validation on benchmarks,
where these are available
= Verified before every release.

m Validation on full simulation programs
= [he validation projects
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Benchmark comparisons

m Validation on benchmarks

m [est-beam simulations
= Two test-beam simulations in regression
= Both run prior to each release, to verify model
performance.
= Radiation benchmarks
= Currently considering two radiation benchmarks
— Tiara,
— SATIF-6 and NEA ‘standard” benchmark comparisons
m Experiencing a continued influx of manpower to
extend and standardize this further.
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Radiation benchmarks — example

m [iara - low energy neutron penetration
schielding.
m 43 or 68 MeV (peak) neutron source

m Use 25cm or 50cm of concrete schielding, or 20
cm or 40 cm of iron schielding

m Measure neutron flux at beam-axis, and 20cm or
40 cm off beam axis.

= For a few sample plots, please see the next
slides.
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A sample source spectra
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Test-beams

= Hadronic test-beam comparisons come from collaboration of
experiments” detector groups with ‘core’ geant4 personnel.

ATLAS Tile test-beam

CMS Tile test-beam

ATLAS HEC test-beam
ATLAS FCAL test-beam
BTEV crystal test-beam
CMS combined test-beam
Csl test-beam benchmark
GLAST (starting) test-beam

Plots being solicited as courtesy of the experimental groups.
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Test-beam sample result
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A test beams study in regression

B ATLAS HEC as a calorimeter berichmark set-up

B Detailed description of the detector

B Very constructive help from the ATLAS calorimeter
Cormmunity

B Analysis: E=F_front + 2E_back

B Results from the ATLAS test-beam analysis are
overlaid , and labeled as ‘org.".

B Data are taken from CALOR 2002 paper:
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The physics lists studied in test-beam

m  [he physics lists used:

Low energy and high energy parameterized models
(LHEP) — check against ATLAS test-beam analysis

Pion inelastic scattering final states simulate with
guark gluon string model (first interactions)+chiral
Invariant phase-space decay (fragmentation) (QGSC)

Pion inelastic scattering final states simulate with
guark gluon string model+precompound model

(QGSP)

Pion inelastic scattering final states simulate with
diffractive string model+-precompound model (FTFP)

J.P. Wellisch,
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The overall parameters

= Geant4 version:
m geant4 4.0 patch 1+2; no tuning

m Energies:
s 10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 180, 200
GeV pions and electrons
= /00 microns range cut

= 2000 events per "point’

m | ooking at performance, linearity, shower
shape, energy resolution, and e/pi
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Relative timing of geant3 and geantd for pion test-beam
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{simplified) ATLAS HEC calorimeter, qeantd 4.0—patch1+2, preliminary
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{zimplified) ATLAS HEC calorimeter, geantd 4.0—patch1+2, preliminary
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{simplified) ATLAS HEC calorimeter, geantd 4.0—patceh 142, preliminary
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Concliusions

= The theory driven models available in geant4 resolve
the problem of simulation of energy resolution

m The quantities studies are at the level (shower shape)
or better (all other) than the geant3.

= =>Verification of results for theoretical models in true
test-beam analysis was done within the ATLAS
calorimeter community; results confirmed.

= Now focusing on shower shapes.
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Other areas of Known usage (likely
incomplete)

m [racker performance
m ATLAS, CMS, BaBar

= Medical
m Uppsala, TERA

= Neutron dosimetry, measurement, beam-lines
m SNO, Los Alamos, CERN/PS, DoD/Can, etc..

= Radiation schielding, activation, thermalization
= DYNAMIX, MECO, ALICE?, CMS, ESA, etc..

= OIl search and similar
s Mitsubishi, General electrics, EXXON, ALCATEL...

J.P. Wellisch,
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Collaboration with 3 parties
Some of the redasoning:

m Geant3 had used two strategies. There were shower
packages released with geant3, and there were interfaces
released with geant3; the latter were interfacing to external
packages. The first was a working model, for the latter,
geant3 always was claimed to be obsolete.

m GISMO: the no physics situation, but only interfacing to
external packages. They never really got support for the use
of these codes with GISMO.

m MCNPX: Gets it right. They encourage and help 3" parties to
release MCNP interfaces with their 3 party: code. It solves
the support question.

J.P. Wellisch,
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Collaboration with 3 parties

m Basis: we provide a set of well defined, published, and highly stable interfaces that

allows interested 3 parties to release adapters to use their code, or to use geant4
physics implementations within their infrastructure.

m EGS: geant4 chips code for y-nuclear reactions also in EGS
m HETC: Being re-written to become natively available in G4
m [NUCL: Being)integrated to become natively available in G4
o

UrQMBD: In the process of being re-engineered to become natively
available inigeant4

m MCNP: Discussion on using the geant4 interfaces in MCNP
m G-FLUKA: Interfaced by ‘air shower’ users for their own use.

m |jege Cascade code: Discussion in progress. We hope that they will
release a G4 interface soon, and are of course happy. to help.
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Concliusions

m [t is very important that individual contributors are
enfranchised to join the collaboration, in particular in
the area of physics modeling.

m They must feel assured that they are well protected
from any attempt to deprive them off (or
copy/steal/subltiliser) the work that built their careers,
[.e. their code and/or publication potential.

= They otherwise would be asked to contribute at their
own peril.

= We should explicitly state a policy ensuring; this in the
MoU revision.
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