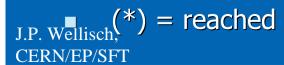
Geant4 Hadronic Physics Working group progress and status.

J.P. Wellisch CERN/EP/SFT

Outline

- Status on milestones, and recent developments
- Validation/verification
- News on outside contacts (3rd parties)

The dry numbers...


- Number of packages
 - Released: 27
 - Total: 36
- Number of classes
 - Released: 720
 - Total: 1114
- Lines of source code.
 - Released: ~240,000
 - Total: ~360,000

- At present about 30 people are contributing to this effort with some of their time, creativity, or expertise.
- The number of use-case packages considered is currently 14, and we provide a total of 16 physics lists for the various areas of applicability.

The milestones.

2002

- 1. Distribute 'educated guess' physics lists for major use-cases (*)
- 2. Include at least one test-beam simulation in pre-release WG level validation (*)
- 3. Improved verification suite for the cascade energy range (*)
- 4. Release biased MARS re-write for energies below 5 GeV (*)
- 5. Include γ -nuclear reactions in quark-gluon string model (*)
- 6. Improve the charge-state treatment for recoils/residuals (*)
- 7. Bring kinetic model to a releasable state (ongoing)
- 8. Release of a cascade code (from HETC milestone 2001, ongoing)
- 9. Provide a generic scattering term for cascade type models (*')
- 10. Improve electro-nuclear cross-section to include hard scattering (*)
- Publish work at least 4 papers submitted to refereed journals (2 done)

Particle physics relevant requirements collected

- Specifically from LHC:
 - Have starting physics list (done)
 - Improve information flow on V&V (done, to be verified)
 - Provide a cascade code (two focused efforts)
 - Fix known problems in low energy models (released)

A complete sample requirement.

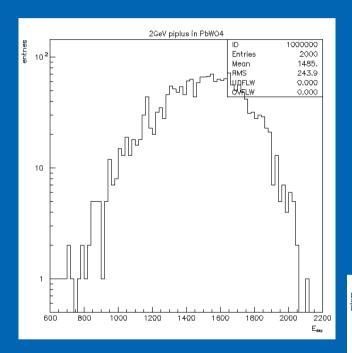
- Name and E-mail: Dennis Wright, SLAC
- Title: Pion and kaon nuclear prodution cross-sections
- Description: 1-5 GeV pions and kaons interacting inelastically. 10% precision would be great.
- Rationale: Representation of how the shower develops.
- Supporting use-cases that require this: Trying to model hadronic interactions in the BaBar interumented flux return.
- Responsible cathegory: hadronics
- Fulfillment criterion: Comparison to the data from particles interacting in the beam-pipe and flux return.
- Relevace: very highly relevant for BaBar, relevant also for LHCb
- References: An E-mail from Dennis pointing to the data.

Requirements collected — titles only

- During the last geant4 workshop, the users workshop at SLAC, and in private mails:
 - Ensure that the physics reference manual match the implementation, and the models are mentioned in the applications developers guide, Referencing papers is just fine.
 - Memory usage for G4NDL cross-sections
 - Energy and momentum conservation should be checked in regression independently by the working group for all models, and publish the test-suite.
 - Use 'well known' international benchmarks to validate; publish results.
 - More understandable hadronic physics lists
 - Get documentation on which model is good/usefull/required for which

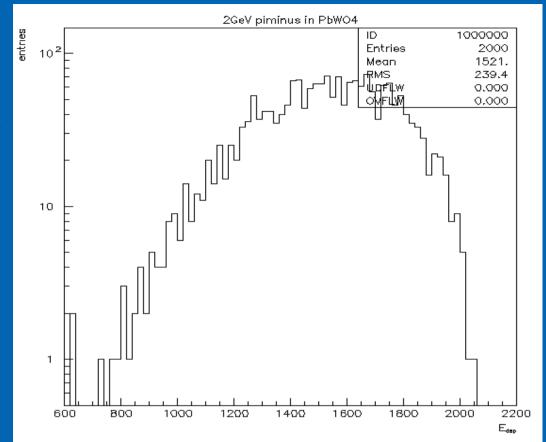
- Provide a set of plots, and put them u; i.e. provide a place to put these plots for users.
- Cross-sections for n,p inelastic scattering below 150 MeV in CMS tracker materials at 10% level of precisions.
- Pion and kaon nuclear prodution cross-sections: 1-5 GeV pions and kaons interacting inelastically. 10% precision would be great.
- 10-20% level of description for 10-100GeV incident protons for example on Beryllium or copper.
- Enroll a set of users to validate on complete application; as beta testers so to say.
- Compare inclusive and exclusive cross-sectios to data from the RAL/Durham database

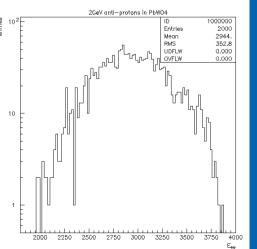
- Description on how to set cuts, and its effects
- Possibility to stop low energy neutral particles (like neutrons)
- Each model should be specified concerning its application area/use-cases
- Provide a list of models per use-case package
- List of models per use-case package
- Include physics list samples, once they exists, into the phsics editor
- Ensure tracability of data to the primary source
- Well defined process for updating the databases on request.
- Parametrizations of hadronic showers in CsI and Iron.
- Parametrizations of neutron background in LHC experiments
- Models for alpha incident inelastic reactions

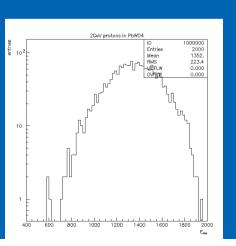

- Models for alpha incident difractive dissociation reactions
- Where the modelling approach allows to produce the residual, it should be provided.
- Neutron production by alphas at energies below 10 MeV; including reaction cross-sections at 20%precision and kinematics of neutrons and gammas produced.
- Include K0 oszillations
- Provide muon nuclear reactions
- Provide internal conversion
- Provide neutron elastic scattering, in particular recoil energy and momentum distributions for neutrons below 10MeV.
- Dito for n inelastic scattering off Xenon and SiO2, CaCO3, H2O

- Dito for capture
- Provide gamma nuclear reactions for gamma energies of less than 100 MeV, including crosssections.
- Provide radioactive decay after transmutation.
- Provide k-shell excitation in radioactive decay
- Activation of detector material and environment by shower particles

Note: Almost all of these requirements are by now fulfilled. Many were fulfilled when the issue was entered as a requirement, so only information was to be provided. The rest are to be scheduled for being addressed, according to priorities.


- 17 fresh requirements harvested during the geant4 workshop last week.
- Direct interaction with the experts is very productive in this.


Sample plots energy deposition



BTEV: All distributions are in the expected energy range

J.P. Wellisch, CERN/EP/SFT

Active tasks 2002

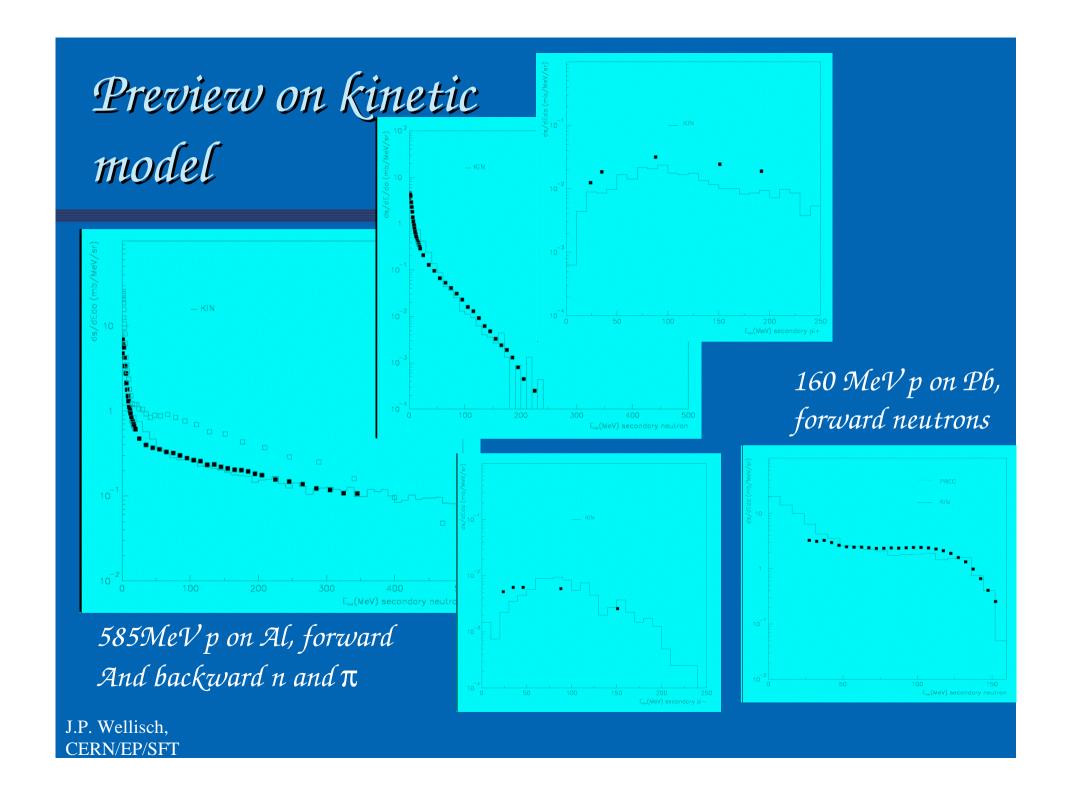
- Write 'educated guess' physics lists for major use-cases
- Include at least one test-beam simulation into regular validation
- Include a complete radiation benchmark into WG level validation
- Improved validation suite for the cascade energy range
- Possibly further extension of the high energy validation suite
- Plan to contribute to SATIF-6
- Release fully leading particle biased mars-5 re-write
- Release of cascade part of HETC re-write
- Improve gamma nuclear reactions in QGS model
- Make a validation/verification WWW page

Active tasks 2002, cont.

- Possibly first release of high energy heavy ion reactions in QGS model, with option to further extension to QMD
- Revision of the reaction cross-sections
- Improve the charge state treatment for recoils.
- Bring kinetic model to releasable state
- Bring inucl cascade code to releasable state
- Research the use of CHIPS in string fragmentation for intrinsically 3D fragmentation
- Provide a generic scattering term for cascade type models
- Alternative coherent elastic model (reggee theory based)

Active tasks 2002, cont.

- Improve electro-nuclear cross-sections to take hard scattering into account.
- Investigate JENDL2.2, and LA150 neutron data libraries
- Collect (even more) requirements
- Release work, coordination
- Contribute to maintenance and user support
- Contribute to architecture working group
- Contribute to process improvement/establishment
- Contribute to training
- Publish work (11 papers in the plan...)


Conclusions

- We have, at TIMENOW, met 8/11 milestones for 2002.
- We get a constant flow of requirements, fee-back, and test-beam results from the detector groups (this is excellent news).
- We have a good team, and we are normally able to attract the expertise needed for modeling.
- We fully depend on visitor and travel money from CERN.
- Front-line support man-power non-trivial to find.

Some hadronic physics highlights of late 2001 and 2002

- Neutron spectra from pre-equilibrium decay and a sneak preview on kinetic model performance
- qgs model for pion and kaon (and gamma) induced reactions
- Doppler broadening on the fly
- Internal conversion, and a new photon evaporation data-base
- Chiral invariant phase-space decay
- A propagation test for quantum molecular dynamics

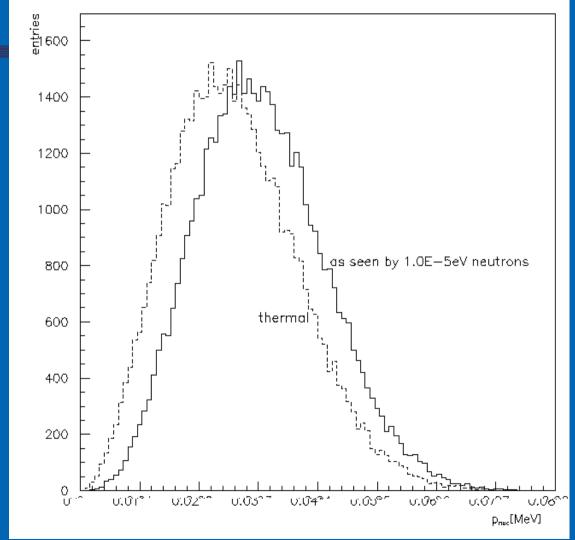
Swapping to show a few transparencies on pre-compound neutron yields.

Low energy neutrons: G4NDL0.2, 3.7

- Are granular selections of data from (alphabetic)
 - Brond 2.1
 - **CENDL 2.2**
 - EFF-3
 - ENDF/B (VI.0, VI.1, VI.5)
 - ENSDF
 - FENDL/E2.0
 - JEF 2.2
 - JENDL (3.1, 3.2, FF, 3.3 currently under study)
 - MENDL-2(P)
- Large parts of the selection is guided by the FENDL-2 selection
- G4NDL0.2 for non-thermal application

The neutron_hp transport models

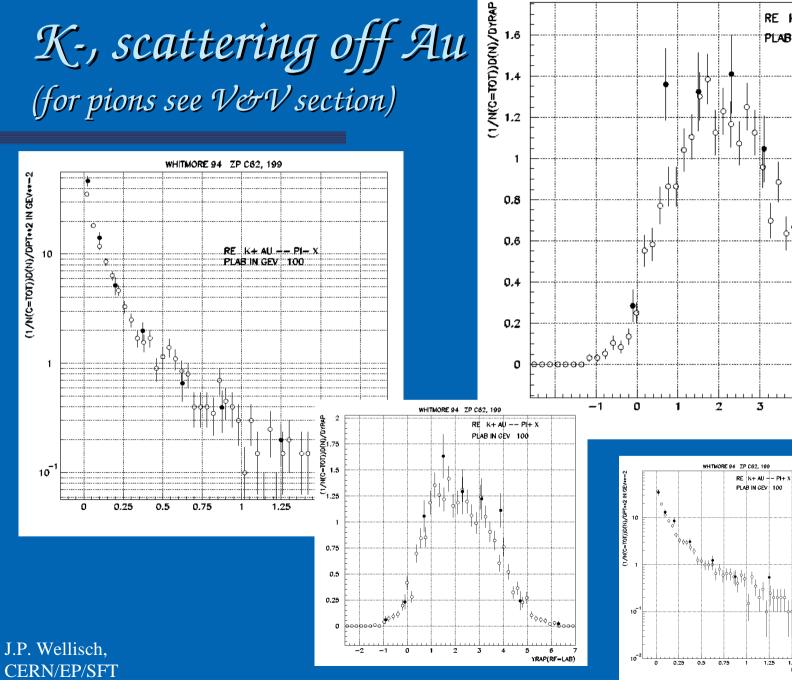
- Simulate the cross-sections and interactions of neutrons with kinetic energies below 20 MeV down to thermal energies.
- The upper limit is set only by the evaluated data libraries the code is based on.
- We consider elastic scattering, fission, capture and inelastic scattering as separate models
- Neutron_hp sampling codes for the ENDF/B-VI derived data formats are completely generic (not including general R-matrix for the time being)
- Note that for fission there is a quite competitive theory driven alternative model, J.P. Wellisch, G4ParaFissionModel.


Models for neutron interaction and thermalization.

- neutron_hp models and cross-sections:
 - Uses the unix file-system to ensure granular and transparent access/usage of data sets.
 - More than 10^10 events run.
 - Uses point-wise cross-sections → no artifacts due to multi-group structure.

Doppler broadening

- Does exact doppler broadening on the fly, based on 0K data → no pre-formatting of data to fixed temperatures, and easy simulation of set-ups with mixed temperatures.
- Adds the doppler bias to the nuclear momentum distribution
- Point one is to the best of our knowledge not available from any other transport code (the second is also in MCNP).

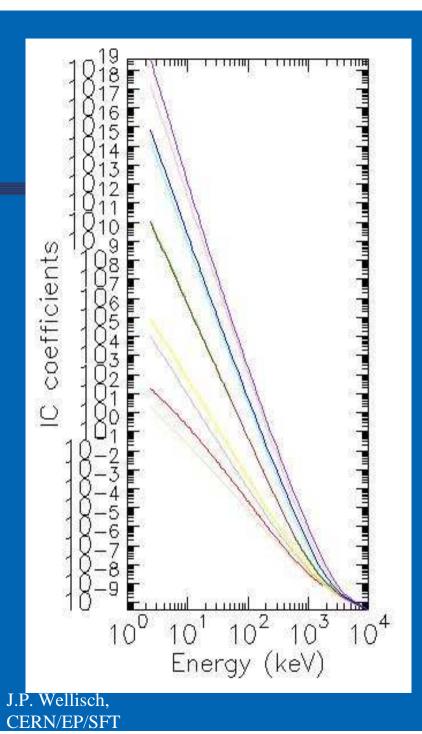

The doppler bias illustrated for Carbon

qgs model for π and Kinduced reactions

- Pomeron trajectory and vertex parameters tuned to describe elastic, total and diffractive (6% assumed) cross-sections for kaon and pion scattering off nucleons.
- No tuning on final state distributions.
- A few plots to illustrate the quality of prediction

K-, scattering off Au (for pions see V&V section)

WHITMORE 94 ZP C62, 199


RE K+ AU -- PI- X

YRAP(RF=LAB)

PLAB IN GEV 100

Photon Evaporation data base

- Originally containing adopted level and gamma-ray transition energies, photon intensity, multipolarity, half-life and spin parity for isotopes up to Z=94, A=240
- Expanded to include probability of internal conversion and internal conversion coefficients (ICC) from shells K, L1, L2, L3, M1, M2, M3, M4, M5 and N+
- Based on ENSDF data from LBNL and tabulated theoretical ICC data from Band et. al. (used for Z ≤ 80) and Rösel et . al. (used 80 ≤ Z ≤ 96)

- ICCs are calculated by cubic spline interpolation using above tables at the required gamma-ray energy
- ICC calculated for Mixed multipolarity M1+E2 if mixing ratio available
- Some changes were introduced in the format of the data base entries to keep the size of the files down (data base is now 4.5 times larger)

Preliminary test results

 ENSDF decay data processed with RADLIST (BNL code) and Geant4 (for 2000 decays)

¹³⁷Cs

	RADL	IST (BNL)	Geant4		
Radiation	Energy (keV)	Intensity (100dks)	Energy (keV)	Intensity (100dks)	
CE K	624.216	7.66 (0.23)	624.216	8.70 (0.66)	
CE L	655.668	1.39 (0.05)	655.668	1.15 (0.24)	
γ	283.500	0.00058			
γ	661.657	85.1 (0.20)	661.657	84.15 (2.05)	

⁵⁷C0

	RADLIST (BNL)			Geant4		
Radiation	Energy (keV)	Intensity (100dks)	Energy (keV)	Intensit	y (100dks)
CE K	7.301	71.00	(6.0)	7.301	70.55	(1.88)
CE				12.899	10.00	(0.70)
CE L	13.567	7.40	(0.6)	13.562	5.95	(0.54)
CE				13.687	0.35	(0.13)
CE				14.315	0.85	(0.21)
CE				14.405	0.45	(0.19)
CE K	114.949	1.83	(0.14)	114.949	1.95	(0.31)
CE				120.497	5.70	(0.53)
CE L	121.215	0.19	(0.020)			22
CE M+	121.968	0.03	(0.005)			
CE K	129.361	1.30	(0.16)	129.362	1.25	(0.25)
CE				134.910	0.25	(0.11)
γ	14.413	9.16	(0.15)	14.413	10.05	(0.71)
γ	122.061	85.60	(0.17)	122.061	86.05	(2.07)
γ	136.474	10.68	(0.08)	136.474	10.05	(0.71)
γ	692.410	0.15	(0.01)	692.030	0.15	(0.09)

A sample development: Chiral Invariant Phase-space Decay.

- A quark level 3-dimensional event generator for fragmentation of excited hadronic systems into hadrons.
- Based on the QCD idea of asymptotic freedom
- Local chiral invariance restoration lets us consider quark partons massless, and we can integrate the invariant phase-space distribution of quark partons and quark exchange (fusion) mechanism of hadronization
- The only non-kinematical concept used is that of a temperature of the hadronic system (quasmon).

Vacuum CHIPS

- This allows to calculate the decay of free excited hadronic systems:
- In an finite thermalized system of N partons with total mass M, the invariant phase-space integral is proportional to M^{2N-4} , and the statistical density of states is proportional to $e^{-M/T}$. Hence we can write the probability to find N partons with temperature T in a state with mass M as

$$dW \propto M^{2N-4}e^{-M/T}dM$$

■ Note that for this distribution, the mean mass square is $\langle M^2 \rangle = 2N(2N-2)T^2$

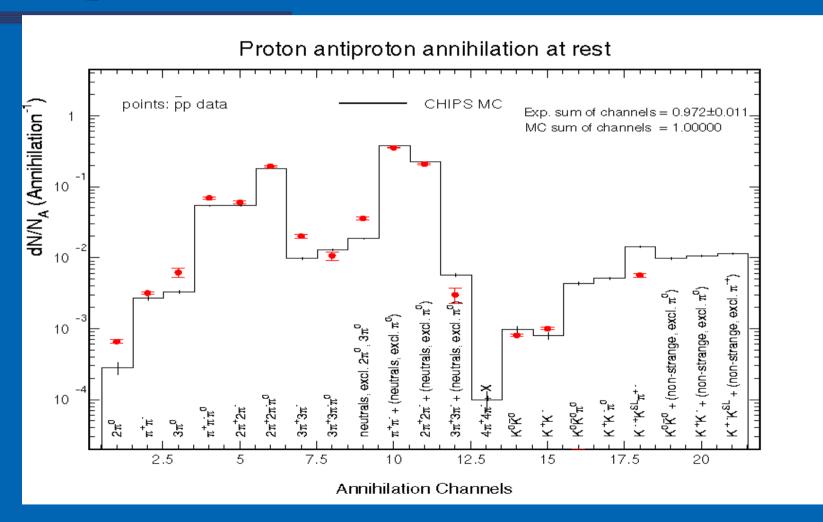
J.P. Wellisch, CERN/EP/SFT

Vacuum CHIPS

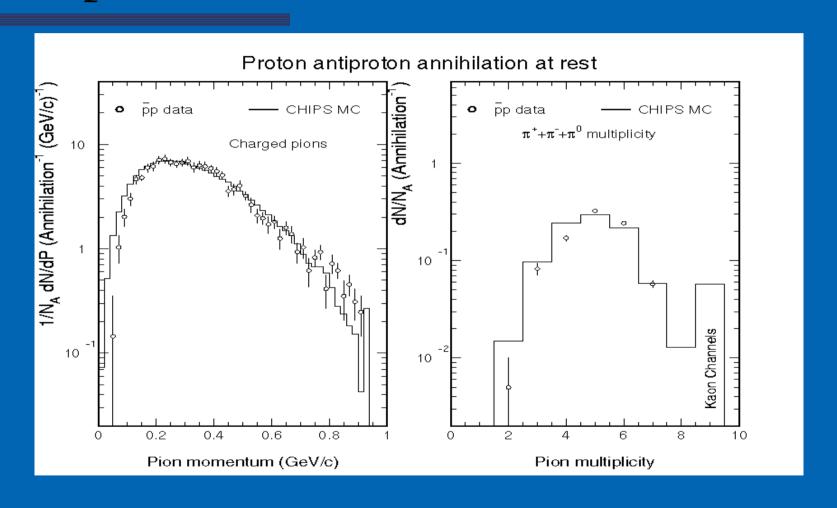
We use this formula to calculate the number of partons in an excited thermalized hadronic system, and obtain the parton spectrum

$$\frac{dW}{kdk} \propto \left(1 - \frac{2k}{M}\right)^{N-3}$$

To obtain the probability for quark fusion into hadrons, we can now compute the probability to find two partons with momenta q and k with the invariant mass μ.


Vacuum CHIPS

Using the delta function to perform the integration and the mass constraint, we find the total kinematical probability of hadronization of a parton with momentum k into a hadron with mass µ:


with momentum k into a hadron with mass
$$\mu$$
:
$$\frac{M-2k}{4k(N-3)} \left(1-\mu^2/2kM\right)^{N-3}$$

- Accounting for spin and quark content of the final state hadron adds (2s+1) and a combinatorial factor.
- At this level of the language, CHIPS can be applied P. Wellisch, p-pbar annihilation

Anti proton annihilation

Anti proton annihilation

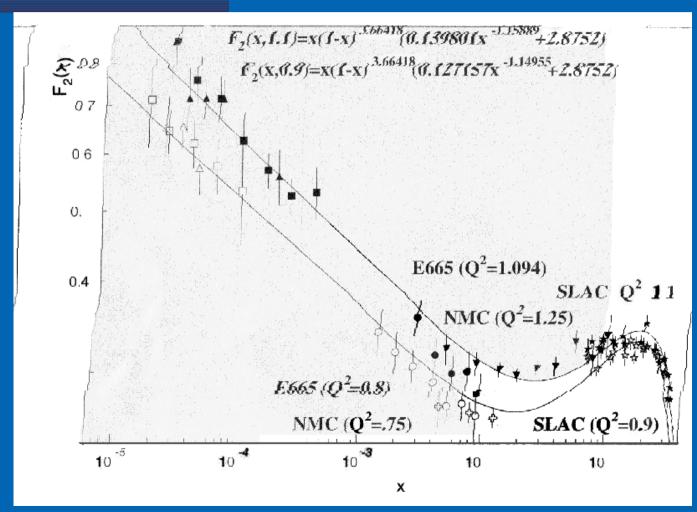
- In order to apply CHIPS for an excited hadronic system within nuclei, we have to add parton exchange with nuclear clusters to the model
- The kinematical picture is, that a color neutral quasmon emits a parton, which is absorbed by a nucleon or a nuclear cluster. This results in a colored residual quasmon, and a colored compound.
- The colored compound then decays into an outgoing nuclear fragment and a 'recoil' quark that is incorporated by the colored quasmon.

Applying mechanisms analogue to vacuum CHIPS, we can write the probability of emission of a nuclear fragment with mass μ as a result of the transition of a parton with momentum k from the quasmon to a fragment with mass μ' as:

$$P(k, \mu', \mu) = \int \left(1 - \frac{2(k - \Delta)}{\mu' + k(1 - \cos\theta_{kq})}\right)^{n-3} \frac{\mu'(k - \Delta)}{2[\mu' + k(1 - \cos\theta_{kq})]^2} d\cos\theta_{kq}$$

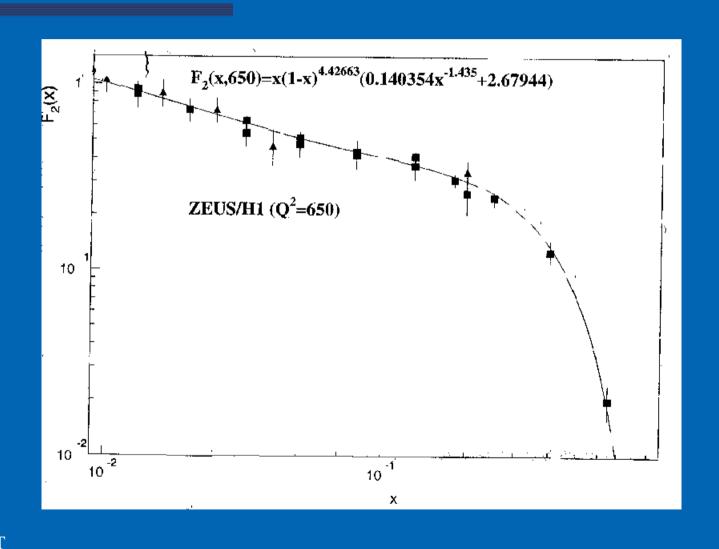
■ Here, n is the number of quark-partons in the nuclear cluster, and \(\Delta \) is the covariant binding energy of the cluster, and the integral is over the angle between parton and recoil parton.

- To calculate the fragment yields it is necessary to calculate the probability to find a cluster of v nucleons within a nucleus. We do this using the following assumptions:
 - A fraction ε1 of all nucleons is not clusterising
 - A fraction ε2 of the nucleons in the periphery of the nucleus is clustering into two nucleon clusters
 - lacktriangle There is a single clusterization probability ω
- and find, with a being the number of nucleons involved in clusterization


$$P_{\nu} = \frac{C_{\nu}^{a} \omega^{\nu-1}}{\left(1 + \omega\right)^{a-1}}$$

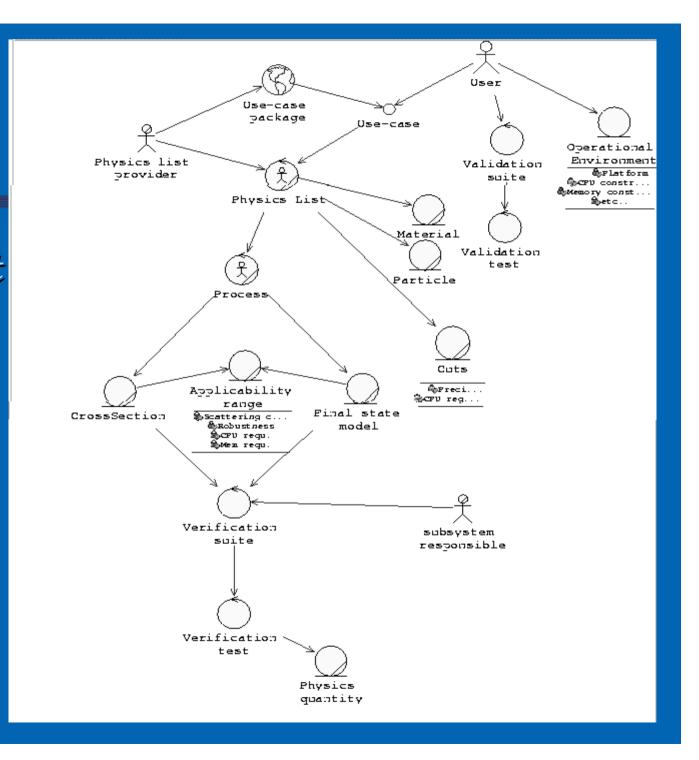
At this level of the language, CHIPS can be applied to capture of pions and photo-nuclear reactions.

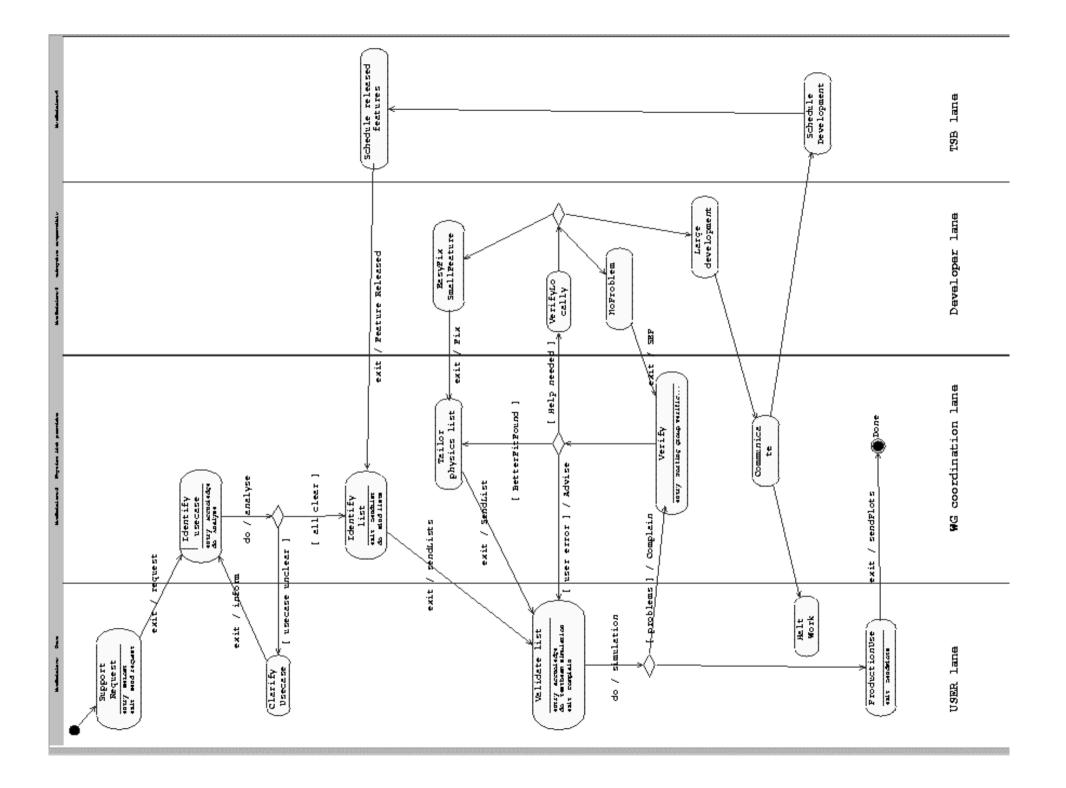
Intra-nuclear CHIPS


Extensions to include the behavior of multiple quasmons within one nucleus have been added.

Hard scattering in electro-nuclear

Hard scattering in electro-nuclear


J.P. Wellisch.


A propagation test for QMD development

- Some characteristics of QDM:
 - A kinematical cascade with detailed modeling of the nucleus.
 - Nuclear Hamiltonian calculated from 2 and 3 body potentials of all hadrons present in the system.
 - Solving the equation of motion by integrating this time-dependent Hamiltonian.
 - Scattering term in terms of localized interactions and decays.
 - Etc...

The support process — static view

J.P. Wellisch, CERN/EP/SFT

Test-beams

- Hadronic test-beam comparisons come from collaboration of experiments' detector groups with 'core' geant4 personnel.
 - ATLAS Tile test-beam
 - CMS Tile test-beam
 - ATLAS HEC test-beam
 - ATLAS FCAL test-beam
 - BTEV crystal test-beam
 - CMS combined test-beam
 - CsI test-beam benchmark
 - GLAST (starting) test-beam
 - Plots being solicited as courtesy of the experimental groups.

Other areas of known usage (likely incomplete)

- Tracker performance
 - ATLAS, CMS, BaBar
- Medical
 - Uppsala, TERA
- Neutron dosimetry, measurement, beam-lines
 - SNO, Los Alamos, CERN/PS, DoD/Can, etc...
- Radiation schielding, activation, thermalization
 - DYNAMIX, MECO, ALICE?, CMS, ESA, etc...
- Oil search and similar
 - Mitsubishi, General electrics, EXXON, ALCATEL...

The hopefully no longer dry numbers...

- Number of packages
 - Released: 27
 - Total: 36
- Number of classes
 - Released: 720
 - Total: 1114
- Lines of source code.
 - Released: ~240,000
 - Total: ~360,000

Conclusions

- We have a good team
- We are normally able to attract the expertise we need
- We fully depend on visitor and travel money from CERN
- Front-line support man-power nontrivial to find

Conclusions

- The main focus of all these developments is of course on LHC and BaBar shower physics, and dosimetry.
- ALL efforts that want to contribute to physics in the geant4 context are welcome.
- Physics modeling, physics V&V, and physics research is both the scope and concern of the geant4 hadronic working group
 - Note that we strive to make sure that individual activities are integrated to avoid duplication of work, but also trivial mistakes

Collaboration with 3rd parties Some of the reasoning:

- Geant3 had used two strategies. There were shower packages released with geant3, and there were interfaces released with geant3; the latter were interfacing to external packages. The first was a working model, for the latter, geant3 always was claimed to be obsolete.
- GISMO: the no physics situation, but only interfacing to external packages. They never really got support for the use of these codes with GISMO.
- MCNPX: Gets it right. They encourage and help 3rd parties to release MCNP interfaces with their 3rd party code. It solves the support question.

Collaboration with 3rd parties

- **Basis:** We provide a set of well defined, published, and highly stable interfaces that allows interested 3rd parties to release adapters to use their code, or to use geant4 physics implementations within their infrastructure.
- EGS: geant4 chips code for γ-nuclear reactions also in EGS
- HETC: Being re-written to become natively available in G4
- INUCL: Being integrated to become natively available in G4
- UrQMD: In the process of being re-engineered to become natively available in geant4
- MCNP: Discussion on using the geant4 interfaces in MCNP
- G-FLUKA: Interfaced by 'air shower' users for their own use.
- Liege Cascade code: Discussion in progress. We hope that they will release a G4 interface soon, and are of course happy to help.

Conclusions

- It is very important that individual contributors are enfranchised to join the collaboration, in particular in the area of physics modeling.
- They must feel assured that they are well protected from any attempt to deprive them off (or copy/steal/subltiliser) the work that built their careers, I.e. their code.
- They otherwise would be asked to contribute at their own peril.
- We should explicitly state a policy ensuring this in the MoU revision.