
Primary particle

Makoto Asai (SLAC Computing
Services)

Geant4 Tutorial Course @
DESY

September 30th, 2003

Primary vertices and particles
• Primary vertices and primary particles should be

stored in G4Event before processing an event.
– G4PrimaryVertex and G4PrimaryParticle classes

• These classes don’t have any dependency to G4ParticleDefinition
nor G4Track.

– Capability of bookkeeping decay chains
• Primary particles may not necessarily be particles which can be

tracked by Geant4.

• Geant4 provides some concrete implementations of
G4VPrimaryGenerator.
– G4HEPEvtInterface
– G4HEPMCInterface
– G4GeneralParticleSource
– G4ParticleGun

Interfaces to HEPEvt and HepMC

• Concrete implementations of G4VPrimaryGenerator
– A good example for experiment-specific primary generator

implementation
• G4HEPEvtInterface

– Suitable to /HEPEVT/ common block, which many of
(FORTRAN) HEP physics generators are compliant to.

– ASCII file input
• G4HepMCInterface

– An interface to HepMC class, which a few new (C++) HEP
physics generators are compliant to.

– ASCII file input or direct linking to a generator through HepMC.

G4GeneralParticleSource

• A concrete implementation of
G4VPrimaryGenerator

• Primary vertex is randomly chosen on the
surface of a certain (radioactive) volume.

• Capability of event biasing (variance
reduction).
– By enhancing particle type, distribution of

vertex point, energy and/or direction
• Suitable especially to space applications

G4ParticleGun

• Concrete implementations of
G4VPrimaryGenerator
– A good example for experiment-specific

primary generator implementation
• It shoots one primary particle of a certain

energy from a certain point at a certain
time to a certain direction.
– Various set methods are available
– Intercoms commands are also available

G4VUserPrimaryGeneratorAction
• This class is one of mandatory user action classes

to control the generation of primaries.
– This class itself should NOT generate primaries but

invoke GeneratePrimaryVertex() method of primary
generator(s).

– One of most frequently asked questions is :
I want “particle shotgun”, “particle machinegun”, etc.

– Instead of implementing such a fancy weapon, you can
• Shoot random numbers in arbitrary distribution

• Use set methods of G4ParticleGun

• Use G4ParticleGun as many times as you want

• Use any other primary generators as many times as you want

G4VUserPrimaryGeneratorAction

• Constructor
– Instantiate primary generator(s)
– Set default values to it(them)

• GeneratePrimaries() method
– Randomize particle-by-particle value(s)
– Set them to primary generator(s)
– Invoke GeneratePrimaryVertex() method of

primary generator(s)
– Never use hard-coded UI commands

G4VUserPrimaryGeneratorAction
void T01PrimaryGeneratorAction::

GeneratePrimaries(G4Event* anEvent)
{

G4ParticleDefinition* particle;
G4int i = (int)(5.*G4UniformRand());
switch(i)
{
case 0: particle = positron; break;
...

}
particleGun->SetParticleDefinition(particle);
G4double pp =

momentum+(G4UniformRand()-0.5)*sigmaMomentum;
G4double mass = particle->GetPDGMass();
G4double Ekin = sqrt(pp*pp+mass*mass)-mass;
particleGun->SetParticleEnergy(Ekin);

G4double angle =

(G4UniformRand()-0.5)*sigmaAngle;
particleGun->SetParticleMomentumDirection

(G4ThreeVector(sin(angle),0.,cos(angle)));

particleGun->GeneratePrimaryVertex(anEvent);
}

• You can repeat this for generating more than one primary particles.

	Primary particle
	Primary vertices and particles
	Interfaces to HEPEvt and HepMC
	G4GeneralParticleSource
	G4ParticleGun
	G4VUserPrimaryGeneratorAction
	G4VUserPrimaryGeneratorAction
	G4VUserPrimaryGeneratorAction
	

