
Introduction
to

Geant4

Makoto Asai (SLAC Computing 
Services)

Geant4 Tutorial Course @ 
DESY

September 30th, 2003 



Contents

• General introduction and brief history

• Highlights of user applications 

• Geant4 kernel
– Basic concepts and kernel structure

– User classes

• Geant4 user support processes



General introduction 
and brief history



What is Geant4?
• Geant4 is the successor of GEANT3, the world-standard toolkit for 

HEP detector simulation.

• Geant4 is one of the first successful attempt to re-design a major 
package of HEP software for the next generation of experiments 
using an Object-Oriented environment. 

• A variety of requirements also came from heavy ion physics, CP 
violation physics, cosmic ray physics, astrophysics, space science 
and medical applications. 

• In order to meet such requirements, a large degree of functionality 
and flexibility are provided.

• G4 is not only for HEP but goes well beyond that.



Flexibility of Geant4
• In order to meet wide variety of requirements from various application 

fields, a large degree of functionality and flexibility are provided. 

• Geant4 has many types of geometrical descriptions to describe most 
complicated and realistic geometries 

– CSG, BREP, Boolean

– STEP compliant 

– XML interface

• Everything is open to the user 

– Choice of physics processes/models

– Choice of GUI/Visualization/persistency/histogramming technologies



Physics in Geant4
• It is rather unrealistic to develop a uniform physics model to cover wide 

variety of particles and/or wide energy range.
• Much wider coverage of physics comes from mixture of theory-driven, 

parameterized, and empirical formulae. Thanks to polymorphism 
mechanism, both cross-sections and models (final state generation) can 
be combined in arbitrary manners into one particular process.
– Standard EM processes
– Low energy EM processes
– Hadronic processes
– Photon/lepton-hadron processes
– Optical photon processes
– Decay processes
– Shower parameterization
– Event biasing technique   



Physics in Geant4
• Each cross-section table or physics model (final state generation) has its 

own applicable energy range. Combining more than one tables / models, 

one physics process can have enough coverage of energy range for

wide variety of simulation applications.

• Geant4 provides sets of alternative physics models so that the user can 

freely choose appropriate models according to the type of his/her 

application.

• Several individual universities / physicists groups are contributing their 

physics models to Geant4. Given the modular structure of Geant4,

developers of each physics model are well recognized and credited.



Geant4 – Its history and future
• Dec ’94 - Project start

• Apr ’97 - First alpha release 

• Jul ’98 - First beta release 

• Dec ’98 - Geant4 0.0 release

• Jul ’99 - Geant4 0.1 release

• …

• Jun ’03 - Geant4 5.2 release

• Dec ’03 - Geant4 6.0 release (planned)

• We currently provide two to three public releases and beta 
releases bimonthly in between public releases every year.



Geant4 
Collaboration

HARP

PPARC
Lebedev

Univ. Barcelona
Collaborators also from non-

member institutions, including
Budker Inst. of Physics

IHEP Protvino
MEPHI Moscow

Pittsburg University

Helsinki Inst. Ph.



Highlights of
Users Applications



Geant4 in HEP

• ATLAS (CERN-

LHC)

• 22 x 22 x 44 m3

• 15,000 ton

• 4 million channels

• 40 MHz readout





Geant4 for beam transportation







Geant4 in space 
science

ESA Space Environment & 
Effects Analysis Section

X-Ray Surveys of 
Asteroids and Moons

Cosmic rays,
jovian electrons

Solar X-rays, e, p

Geant3.21

G4 “standard”

Geant4 low-
E

C, N, O line emissions 
included

Induced X-ray line emission:
indicator of target 
composition
(~100 µm surface layer)

Courtesy SOHO EIT 



ESA Space Environment & 
Effects Analysis Section

DESIRE (Dose Estimation by 
Simulation of the ISS Radiation 
Environment)

• KTH Stockholm, ESTEC, EAC, 
NASA Johnson

• Prediction of the ambient energetic 
particle environment (SPENVIS & 







For next generation linear 
collider experiment

Courtesy of N.Graf (SLAC)



Courtesy of N.Graf (SLAC)



Courtesy of N.Graf (SLAC)



Courtesy of N.Graf (SLAC)



Basic concepts
and kernel structure



Geant4 kernel
• Geant4 consists of 17 categories.

– Independently developed and 
maintained by WG(s) responsible to 
each category.

– Interfaces between categories (e.g. 
top level design) are maintained by 
the global architecture WG.

• Geant4 Kernel

– Handles run, event, track, step, hit, 
trajectory.

– Provides frameworks for geometrical 
representation and physics 
processes.

Geant4

ReadoutVisuali
zation

Persis
tency

Run

Event

Inter 
faces

Tracking

Digits + 
Hits

Processes

Track

Geometry Particle

Graphic 
_reps

Material

Intercoms

Global



Run in Geant4
• As an analogy of the real experiment, a run of Geant4 starts with 

“Beam On”.
• Within a run, the user cannot change

– detector geometry

– settings of physics processes

---> detector is inaccessible during a run

• Conceptually, a run is a collection of events which share the same 
detector conditions.

• At the beginning of a run, geometry is optimized for navigation and 
cross-section tables are calculated according to materials appear in 
the geometry and the cut-off values defined. 

• G4RunManager class manages processing a run, a run is represented 
by G4Run class or a user-defined class derived from G4Run.



Event in Geant4
• At beginning of processing, an event contains primary particles.

These primaries are pushed into a stack.

• When the stack becomes empty, processing of an event is over.

• G4EventManager class manages processing an event.

• G4Event class represents an event. It has following objects at the 

end of its processing. 

– List of primary vertexes and particles (as input)

– Hits collections

– Trajectory collection (optional)

– Digits collections (optional)



Track in Geant4
• Track is a snapshot of a particle.

– It has only position and physical quantities of current instance.
• Step is a “delta” information to a track.

– Track is not a collection of steps.
• Track is deleted when

– it goes out of the world volume
– it disappears (e.g. decay)
– it goes down to zero kinetic energy and no “AtRest” additional 

process is required
– the user decides to kill it

• No track object persists at the end of event.
– For the record of track, use trajectory class objects.

• G4TrackingManager manages processing a track, a track is 
represented by G4Track class.



Step in Geant4
• Step has two points and also “delta” information of a particle (energy 

loss on the step, time-of-flight spent by the step, etc.).

• Each point knows the volume (and material). In case a step is limited by 
a volume boundary, the end point physically stands on the boundary, 
and it logically belongs to the next volume.

– Because one step knows materials of two volumes, boundary 
processes such as transition radiation or refraction could be 
simulated.

• G4SteppingManager class manages processing a step, a step is 
represented by G4Step class.

Begin of step point
End of step point

Step

Boundary



Particle in Geant4
• A particle in Geant4 is represented in three layers of classes.
• G4Track

– Position, geometrical information, etc.
– This is a class representing a particle to be tracked.

• G4DynamicParticle
– "Dynamic" physical properties of a particle, such as momentum, 

energy, spin, etc.
– Each G4Track object has its own and unique G4DynamicParticle 

object.
– This is a class representing an individual particle (which is not 

necessarily to be tracked).
• G4ParticleDefinition

– "Static" properties of a particle, such as charge, mass, life time, decay 
channels, etc.

– G4ProcessManager which describes processes involving to the 
particle

– All G4DynamicParticle objects of same kind of particle share the same 
G4ParticleDefinition.



Tracking and processes
• Geant4 tracking is general. 

– It is independent to 
• the particle type 

• the physics processes involving to a particle

– It gives the chance to all processes 
• To contribute to determining the step length

• To contribute any possible changes in physical quantities of the
track

• To generate secondary particles

• To suggest changes in the state of the track

– e.g. to suspend, postpone or kill it.



Processes in Geant4
• In Geant4, particle transportation is a process as well, by which a particle 

interacts with geometrical volume boundaries and field of any kind.

– Because of this, shower parameterization process can take over from 
the ordinary transportation without modifying the transportation
process.

• Each particle has its own list of applicable processes. At each step, all 
processes listed are invoked to get proposed physical interaction lengths.

• The process which requires the shortest interaction length (in space-
time) limits the step. 

• All processes are derived from G4VProcess abstract base class. Each 
particle has its individual G4ProcessManager class object which holds a 
vector of assigned processes.



Process and step

• Each process has one or combination of the 
following natures.
– AtRest

• e.g. muon decay at rest

– AlongStep
• e.g. Celenkov process

– PostStep
• e.g. decay on the fly

• Each process involving to a step replies a 
concrete object of G4ParticleChange which 
affects on a step/track.



Volume
• Three conceptual layers 
– G4VSolid -- shape, size
– G4LogicalVolume -- daughter physical volumes, 

material, sensitivity, user limits, etc.
– G4VPhysicalVolume -- position, rotation

• Hierarchal three layers of geometry description 
allows maximum reuse of information to minimize 
the use of memory space.

• Detector sensitivity should be described by the user 
in his/her concrete implementation of 
G4VSensitiveDetector and set to 
G4LogicalVolume.

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume



How Geant4 runs (one step)
Stepping 
Manager

Physics 
Process

Particle 
Change

Step Track Logical 
Volume

Sensitive 
Detector

GetPhysicalInteractionLength

SelectShortest

DoIt
Fill

Update

Update

IsSensitive

GenerateHits



Cuts in Geant4
• A Cut in Geant4 is a production threshold.

– Only for physics processes that have infrared divergence
– Not tracking cut, which does not exist in Geant4

• Energy threshold must be determined at which discrete energy loss is replaced by 
continuous loss
– Old way: 

• Track primary particle until cut-off energy is reached, calculate continuous 
loss and dump it at that point, stop tracking primary

• Create secondaries only above cut-off energy, or add to continuous loss 
of primary for less energetic secondaries

– Geant4 way: 
• Specify range (which is converted to energy for each material) at which 

continuous loss begins, track primary down to zero range
• Create secondaries only above specified range, or add to continuous loss 

of primary for secondaries of less energetic and not reaching to the 
volume boundary



Energy cut vs. range cut
• 500 MeV/c proton in liq.Ar (4mm) / Pb (4mm) sampling calorimeter

• Geant3 (energy cut)
– Ecut = 450 keV

liq.Ar Pb liq.Ar Pb
• Geant4 (range cut)

– Rcut = 1.5 mm
– Corresponds to                   

Ecut in liq.Ar = 450 
keV, Ecut in Pb = 2 
MeV



Range cut vs. geometrical safety
• Even though a secondary is less 

energetic than the defined range 
cut, it can penetrate to the next 
volume (and actual range can be 
longer than the range cut) if it is 
born close to the geometrical 
boundary.

• Range cut is applied only if the 
range of the particle is shorter than 
the geometrical safety. 

– Such particle cannot penetrate.

– Geometrical safety is the 
isotropic shortest distance to the 
geometrical boundary.

CO2 PbPb CO2



Field integration
• In order to propagate a particle inside a field  (e.g. magnetic, electric or 

both), we solve the equation of motion of the particle in the field. 
• We use a Runge-Kutta method for the integration of the ordinary 

differential equations of motion. 
– Several Runge-Kutta ‘steppers’ are available.

• In specific cases other solvers can also be used: 
– In a uniform field, using the analytical solution.
– In a nearly uniform field (BgsTransportation/future)
– In a smooth but varying field, with new RK+helix.

• Using the method to calculate the track's motion in a field, Geant4 
breaks up this curved path into linear chord segments. 
– We determine the chord segments so that they closely approximate

the curved path.
‘Tracking’ Step

Chords

Real Trajectory



Tracking in field
• We use the chords to interrogate the G4Navigator, to see whether the 

track has crossed a volume boundary.
• User can set the accuracy of the volume intersection, 

– By setting a parameter called the “miss distance”
• It is a measure of the error in whether the approximate track 

intersects a volume. 
• One physics/tracking step can create several chords.

– In some cases, one step consists of several helix turns.

‘Tracking’ Step
Chords

Real Trajectory
"miss distance"



Stack
• Track is a class object, thus it is easy to 

treat suspending or postponing tracks. 
For example,
– Suspend tracks at the entrance of 

calorimeter, i.e. simulate all tracks in 
tracking region before generating 
showers.

– Suspend a “looper” track after certain 
time and postpone it to next event.

– Prioritized tracking without 
performance cost

• Stacks are managed by G4StackManager
with user's G4UserStackingAction.

• Well-thought prioritization/abortion of 
tracks/events makes entire simulation 
process much more efficient.



Geant4 as a state machine
• Geant4 has six application states.

– G4State_PreInit
• Material, Geometry, Particle and/or 

Physics Process need to be 
initialized/defined

– G4State_Idle
• Ready to start a run

– G4State_GeomClosed
• Geometry is optimized and ready to 

process an event
– G4State_EventProc

• An event is processing
– G4State_Quit

• (Normal) termination
– G4State_Abort

• A fatal exception occurred and program 
is aborting

PreInit

Idle

EventProc

GeomClosed

Quit

initialize

beamOn exit

Abort



Unit system
• Internal unit system used in Geant4 is completely hidden not only from 

user’s code but also from Geant4 source code implementation.

• Each hard-coded number must be multiplied by its proper unit.
radius = 10.0 * cm;
kineticE = 1.0 * GeV;

• To get a number, it must be divided by a proper unit.
G4cout << eDep / MeV << “ [MeV]” << G4endl;

• Most of commonly used units are provided and user can add his/her 
own units.

• By this unit system, source code becomes more readable and importing 
/ exporting physical quantities becomes straightforward.

– For particular application, user can change the internal unit to
suitable alternative unit without affecting to the result.



G4cout, G4cerr

• G4cout and G4cerr are ostream objects defined by Geant4.

– G4endl is also provided.

• Some GUIs are buffering output streams so that they display print-
outs on another window or provide storing / editing functionality.

– The user should not use std::cout, etc.

• The user should not use std::cin for input. Use user-defined 
commands provided by intercoms category in Geant4.



User classes



User classes
• Initialization classes

– Invoked at the initialization
• G4VUserDetectorConstruction
• G4VUserPhysicsList

• Action classes
– Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

• main()
– Geant4 does not provide main().
Note : classes written in yellow are mandatory.



Describe your detector

• Derive your own concrete class from 
G4VUserDetectorConstruction abstract base class.

• In the virtual method Construct(),
– Instantiate all necessary materials
– Instantiate volumes of your detector geometry
– Instantiate your sensitive detector classes and set them to 

the corresponding logical volumes
• Optionally you can define 

– Regions for any part of your detector
– Visualization attributes (color, visibility, etc.) of your 

detector elements



Select physics processes
• Geant4 does not have any default particles or processes.

– Even for the particle transportation, you have to define it 
explicitly.

• Derive your own concrete class from G4VUserPhysicsList
abstract base class.
– Define all necessary particles
– Define all necessary processes and assign them to proper 

particles
– Define cut-off ranges applied to the world (and each region)

• Geant4 provides lots of utility classes/methods and examples.
– "Educated guess" physics lists for defining hadronic 

processes for various use-cases.



Generate primary event
• Derive your concrete class from G4VUserPrimaryGeneratorAction

abstract base class.

• Pass a G4Event object to one or more primary generator concrete class 
objects which generate primary vertices and primary particles.

• Geant4 provides several generators in addition to the 
G4VPrimaryParticlegenerator base class.

– G4ParticleGun

– G4HEPEvtInterface, G4HepMCInterface

• Interface to /hepevt/ common block or HepMC class

– G4GeneralParticleSource

• Define radioactivity



Optional user action classes
• All user action classes, methods of which are invoked during “Beam On”, 

must be constructed in the user’s main() and must be set to the 
RunManager.

• G4UserRunAction
– G4Run* GenerateRun()

• Instantiate user-customized run object
– void BeginOfRunAction(const G4Run*)

• Define histograms
– void EndOfRunAction(const G4Run*)

• Store histograms
• G4UserEventAction

– void BeginOfEventAction(const G4Event*)
• Event selection
• Define histograms

– void EndOfEventAction(const G4Event*)
• Analyze the event



Optional user action classes
• G4UserStackingAction

– void PrepareNewEvent()
• Reset priority control

– G4ClassificationOfNewTrack ClassifyNewTrack(const
G4Track*)

• Invoked every time a new track is pushed 

• Classify a new track -- priority control

– Urgent, Waiting, PostponeToNextEvent, Kill

– void NewStage()
• Invoked when the Urgent stack becomes empty

• Change the classification criteria 

• Event filtering (Event abortion)



Optional user action classes
• G4UserTrackingAction

– void PreUserTrackingAction(const G4Track*)
• Decide trajectory should be stored or not

• Create user-defined trajectory

– void PostUserTrackingAction(const G4Track*)

• G4UserSteppingAction
– void UserSteppingAction(const G4Step*)

• Kill / suspend / postpone the track

• Draw the step (for a track not to be stored as a trajectory)



The main program

• Geant4 does not provide the main().

• In your main(), you have to
– Construct G4RunManager (or your derived class)

– Set user mandatory classes to RunManager
• G4VUserDetectorConstruction

• G4VUserPhysicsList

• G4VUserPrimaryGeneratorAction

• You can define VisManager, (G)UI session, 
optional user action classes, and/or your 
persistency manager in your main().



Select (G)UI
• In your main(), according to your computer environments, construct 

a G4UIsession concrete class provided by Geant4 and invoke its 
sessionStart() method.

• Geant4 provides
– G4UIterminal -- C- and TC-shell like character terminal
– G4GAG -- Tcl/Tk or Java PVM based GUI
– G4Wo -- Opacs
– G4JAG -- Interface to JAS (Java Analysis Studio)
– G4UIBatch -- Batch job with macro file



Visualization

• Derive your own concrete class from G4VVisManager 
according to your computer environments.

• Geant4 provides interfaces to graphics drivers
– DAWN -- Fukui renderer
– WIRED
– RayTracer -- Ray tracing by Geant4 tracking
– OPACS
– OpenGL
– OpenInventor
– VRML



Environment variables
• You need to set following environment variables to compile, link

and execute Geant4-based simulation.
– Mandatory variables

• G4SYSTEM – OS (e.g. Linux-g++)
• G4INSTALL – base directory of Geant4 
• G4WORKDIR – your temporary work space
• CLHEP_BASE_DIR – base directory of CLHEP

– Variables for physics processes in case corresponding 
processes are used

• G4LEVELGAMMADATA - photon evaporation
• G4LEDATA - cross-sections for Low-E EM module
• G4RADIOACTIVEDATA - radioactive decay
• NeutronHPCrossSections - neutron cross-section 

– Additional variables for GUI/Vis/Analysis



(Graphical) User Interfaces
• Geant4 kernel is independent to any specific GUI technology.
• Geant4 provides several alternative (G)UIs or interfaces to external 

GUI packages. The user can choose one or more of them according 
to computer environment / need.
– Character terminal (csh and tcsh(bash)-like terminal) 
– Xm, Xaw, Win32, variations of the upper terminals by using a 

Motif, Athena or Windows widget to retrieve commands 
– GAG, a fully Graphical User Interface and its extension 

GainServer of the client/server type 
– OPACS, an OPACS/Wo widget manager implementation in 

conjunction with the OPACS visualization system. 
– JAG, an interface to JAS (Java Analysis Studio)
– User can connect his/her own GUI to Geant4



Visualization
• Geant4 kernel is independent to any specific visualization 

technology.
• Geant4 provides several alternative visualization drivers or 

interfaces to external visualization drivers. The user can choose one 
or more of them according to computer environment / need.
– OpenGL viewers  
– FukuiRenderer (DAWN)
– VRML builder
– WIRED
– Wo, Xo (OPACS)
– OpenInventorX (OIX)
– RayTracer
– User can connect his/her own visualization driver to Geant4

• Some example figures are given with introduction of users 
applications in this presentation



User Support



User Support
• Geant4 Collaboration offers extensive user supports.

– Users workshops

– Tutorial courses

– HyperNews and mailing list

– Bug reporting system 

– Requirements tracking system

– Daily “private” communications

– New implementation - Technical Forum



Geant4 users workshop
• Users workshops were held or are going to be held hosted by several 

institutes for various user communities.
– KEK - Dec.2000, Jul.2001, Mar.2002, Jul.2002, Mar.2003, Jul.2003
– SLAC - Feb.2002
– Spain (supported by INFN) - Jul.2002
– CERN - Nov.2002
– ESA - Jan.2003, Jan.2004 (planned) 

• dedicated to space-related users
– Helsinki - Oct.2003
– Local workshops of one or two days were held or are planned at 

several places.



Geant4 tutorials / lectures
• In addition to the users workshops, many tutorial courses and lectures 

with some discussion time slots were held for various user communities.
– CERN School of Computing
– Italian National School for HEP/Nuclear Physicists
– MC2000
– MCNEG workshop
– KEK, SLAC, DESY, FNAL, INFN, Frascati, Karolinska, GranSasso, 

etc.
– ATLAS, CMS, LHCb
– Tutorials/lectures at universities

• U.K. - Imperial
• Italy - Genoa, Bologna, Udine, Roma, Trieste

• Near future tutorial courses
– DESY (Sept.30 - Oct.02, 2003)
– IEEE NSS/MIC @ Portland, Oregon (Oct.19, 2003)
– FNAL (Oct.27 - Oct.29, 2003)



HyperNews
• HyperNews system was set up in April 

2001 



HyperNews
• 19 categories 

• Not only “user-
developer”, but 
also “user-user”
information 
exchanges are 
quite intensive.



HyperNews is quite active



Some postings are novice…



Some are excellent users contribution



Technical Forum
• In the Technical Forum, the Geant4 Collaboration, its user community 

and resource providers discuss:
– major user and developer requirements, user and developer 

priorities, software implementation issues, prioritized plans, physics 
validation issues, user support issues

• The Technical Forum is open to all interested parties 
– To be held at least 4 times per year (in at least two locales)

• The purpose of the forum is to:
– Achieve, as much as possible, a mutual understanding of the needs 

and plans of users and developers. 
– Provide the Geant4 Collaboration with the clearest possible 

understanding of the needs of its users.
– Promote the exchange of information about physics validation 

performed by Geant4 Collaborators and Geant4 users.
– Promote the exchange of information about user support provided 

by Geant4 Collaborators and Geant4 user communities.
• First Technical Forum meeting at TRIUMF during this collaboration 

meeting, followed by one at CERN in October.


	IntroductiontoGeant4
	Contents
	General introduction and brief history
	What is Geant4?
	Flexibility of Geant4
	Physics in Geant4
	Physics in Geant4
	Geant4 – Its history and future
	Geant4 Collaboration
	Highlights ofUsers Applications
	Geant4 in HEP
	Geant4 for beam transportation
	Geant4 in space science
	
	Basic conceptsand kernel structure
	Geant4 kernel
	Run in Geant4
	Event in Geant4
	Track in Geant4
	Step in Geant4
	Particle in Geant4
	Tracking and processes
	Processes in Geant4
	Process and step
	Volume
	How Geant4 runs (one step)
	Cuts in Geant4
	Energy cut vs. range cut
	Range cut vs. geometrical safety
	Field integration
	Tracking in field
	Stack
	Geant4 as a state machine
	Unit system
	G4cout, G4cerr
	User classes
	User classes
	Describe your detector
	Select physics processes
	Generate primary event
	Optional user action classes
	Optional user action classes
	Optional user action classes
	The main program
	Select (G)UI
	Visualization
	Environment variables
	(Graphical) User Interfaces
	Visualization
	User Support
	User Support
	Geant4 users workshop
	Geant4 tutorials / lectures
	HyperNews
	HyperNews
	HyperNews is quite active
	Some postings are novice…
	Some are excellent users contribution
	Technical Forum

