
Detector sensitivity

Makoto Asai (SLAC Computing 
Services)

Geant4 Tutorial Course @ 
DESY

September 30th, 2003 



Contents

• Sensitive detector and hit

• Digitizer module and digit

• Hit class

• Sensitive detector class

• Touchable

• Readout geometry

• G4HCofThisEvent class and its use



Sensitive detector and Hit
• Each Logical Volume can have a pointer to a sensitive detector.

– Then this volume becomes sensitive.

• Hit is a snapshot of the physical interaction of a track or an 

accumulation of interactions of tracks in the sensitive region of your 

detector.

• A sensitive detector creates hit(s) using the information given in 

G4Step object. The user has to provide his/her own implementation of 

the detector response.

– UserSteppingAction class should NOT do this.

• Hit objects, which are still the user’s class objects, are collected in a 

G4Event object at the end of an event.



Detector sensitivity

• A sensitive detector either

– constructs one or more hit objects or 

– accumulates values to existing hits 

using information given in a G4Step object.

• Note that you must get the volume information from the 

“PreStepPoint”.

Begin of step point

End of step pointStep

Boundary



Digitizer module and digit
• Digit represents a detector output (e.g. ADC/TDC count, 

trigger signal, etc.).

• Digit is created with one or more hits and/or other digits 

by a user's concrete implementation derived from 

G4VDigitizerModule.

• In contradiction to the sensitive detector which is 

accessed at tracking time automatically, the digitize() 

method of each G4VDigitizerModule must be explicitly 

invoked by the user’s code (e.g. at EventAction).



Hit class
• Hit is a user-defined class derived from G4VHit.
• You can store various types of information by implementing your own 

concrete Hit class. For example:
– Position and time of the step 
– Momentum and energy of the track 
– Energy deposition of the step 
– Geometrical information 
– or any combination of above

• Hit objects of a concrete hit class must be stored in a dedicated collection 
which is instantiated from G4THitsCollection template class.

• The collection will be associated to a G4Event object via G4HCofThisEvent.
• Hits collections are accessible 

– through G4Event at the end of event
• to be used for analyzing an event

– through G4SDManager during processing an event
• to be used for event filtering in user's stacking action



Implementation of Hit class
#include "G4VHit.hh"
class MyDriftChamberHit : public G4VHit
{

public:
MyDriftChamberHit();
virtual ~MyDriftChamberHit();
virtual void Draw();
virtual void Print();

private:
// some data members

public:
// some set/get methods

};

#include “G4THitsCollection.hh”
typedef G4THitsCollection<MyDriftChamberHit>

MyDriftChamberHitsCollection;



Sensitive Detector class
• Sensitive detector is a user-defined class derived from G4VSensitiveDetector.
#include "G4VSensitiveDetector.hh"
#include "MyDriftChamberHit.hh"
class G4Step;
class G4HCofThisEvent;
class MyDriftChamber : public G4VSensitiveDetector
{
public:

MyDriftChamber(G4String name);
virtual ~MyDriftChamber();
virtual void Initialize(G4HCofThisEvent*HCE);
virtual G4bool ProcessHits(G4Step*aStep, 

G4TouchableHistory*ROhist);
virtual void EndOfEvent(G4HCofThisEvent*HCE);

private:
MyDriftChamberHitsCollection * hitsCollection;
G4int collectionID;

};



Implementation of Sensitive Detector
MyDriftChamber::MyDriftChamber(G4String name)

:G4VSensitiveDetector(name)
{ collectionName.insert("driftChamberCollection");
collectionID = -1;}

void MyDriftChamber::Initialize(G4HCofThisEvent*HCE)
{ hitsCollection = new MyDriftChamberHitsCollection

(SensitiveDetectorName,collectionName[0]);
if(collectionID<0)
{ collectionID = G4SDManager::GetSDMpointer()

->GetCollectionID(hitsCollection); }
HCE->AddHitsCollection(collectionID,hitsCollection); }

G4bool MyDriftChamber::ProcessHits
(G4Step*aStep,G4TouchableHistory*ROhist)

{ MyDriftChamberHit* aHit = new MyDriftChamberHit();
// some set methods 
...
hitsCollection->insert(aHit);
return true; }

void MyDriftChamber::EndOfEvent(G4HCofThisEvent*HCE) {;}



Touchable
• As mentioned already, G4Step has two G4StepPoint objects as its 

starting and ending points. All the geometrical information of the 
particular step should be taken from “PreStepPoint”.
– Geometrical information associated with G4Track is basically same 

as “PostStepPoint”.
• Each G4StepPoint object has 

– Position in world coordinate system
– Global and local time
– Material
– G4TouchableHistory for geometrical information

• G4TouchableHistory object is a vector of information for each 
geometrical hierarchy.
– copy number
– transformation / rotation to its mother



Copy number• Suppose a calorimeter is made 
of 4x5 cells.
– and it is implemented by two 

levels of replica.
• In reality, there is only one

physical volume object for each 
level. Its position is 
parameterized by its copy 
number.

• To get the copy number of each 
level, suppose what happens if 
a step belongs to two cells.

CopyNo = 0

CopyNo = 1

CopyNo = 2

CopyNo = 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

– Remember geometrical information in G4Track is identical to 
"PostStepPoint".

– You cannot get the collect copy number for "PreStepPoint" if you 
directly access to the physical volume.

• Use touchable to get the proper copy number, transform matrix, etc.



Touchable
• G4TouchableHistory has information of geometrical hierarchy of the point. 

G4Step* aStep;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHistory* theTouchable =

(G4TouchableHistory*)(preStepPoint->GetTouchable());

G4int copyNo = theTouchable->GetVolume()->GetCopyNo();

G4int motherCopyNo = theTouchable->GetVolume(1)-
>GetCopyNo();

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()

->GetTopTransform().TransformPoint(worldPos);



Readout geometry 
• In some cases of most complicated geometries, it is not easy to define 

volume boundaries corresponding to the readout segmentation.
• Readout geometry is a virtual and artificial geometry which can be 

defined in parallel to the real detector geometry. 
• Readout geometry is optional. May have more than one.

– Each one should be associated to a sensitive detector. 
• Note that a step is not limited by the boundary of readout geometry.



Defining a sensitive detector
• Basic strategy 

G4LogicalVolume* myLogCalor = ……;
G4VSensetiveDetector* pSensetivePart =

new MyCalorimeter(“/mydet/calorimeter1”);
G4SDManager* SDMan = G4SDManager::GetSDMpointer();
SDMan->AddNewDetector(pSensitivePart);
myLogCalor->SetSensitiveDetector(pSensetivePart);

• Each detector object must have a unique name.
– Some logical volumes can share one detector object
– More than one detector objects can be made from one detector 

class with different detector name.
– One logical volume cannot have more than one detector objects. 

But, one detector object can generate more than one kinds of hits.
• e.g. a drift chamber class may generate anode and cathode hits 

separately.



G4HCofThisEvent

• A G4Event object has a G4HCofThisEvent object at the end of 
(successful) event processing. G4HCofThisEvent object stores all
hits collections made within the event.
– Pointer(s) may be NULL if collection(s) are not created in the 

particular event.
– Individual collection should be accessed by collection index 

(integer). Index is constant at least for the run
• It is constant whole through program execution unless you 

explicitly delete your sensitive detector
– Hits collections are stored by pointers of G4VHitsCollection base 

class. Thus, you have to cast them to types of individual 
concrete classes.



Usage of G4HCofThisEvent
// CHCID shuold be a data member initialized to -1
if(CHCID<0)
{ CHCID = G4SDManager::GetSDMpointer()

->GetCollectionID("myDet/calorimeter1/collection1"); }
if(CHCID<0) G4cerr …
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
MyCalorimeterHitsCollection* CHC = 0;
if(HCE) // HCE can be zero if the event is aborted
{CHC = (MyCalorimeterHitsCollection*)(HCE->GetHC(CHCID));}
if(CHC) // CHC can be zero if no hit is generated
{ int n_hit = CHC->entries();

G4cout<<"Calorimeter has ”<<n_hit<<" hits."<<G4endl;
for(int i1=0;i1<n_hit;i1++)
{ MyCalorimeterHit* aHit = (*CHC)[i1];

aHit->Print(); }
}

• This scheme can be utilized also for Digitization.


	Detector sensitivity
	Contents
	Sensitive detector and Hit
	Detector sensitivity
	Digitizer module and digit
	Hit class
	Implementation of Hit class
	Sensitive Detector class
	Implementation of Sensitive Detector
	Touchable
	Copy number
	Touchable
	Readout geometry
	Defining a sensitive detector
	G4HCofThisEvent
	Usage of G4HCofThisEvent

