
Detector Description

Authors: J.Apostolakis, G.Cosmo

Detector DescriptionDetector Description
Part I The Basics

Part II Logical and physical volumes

Part III Solids & touchables

Part IV Electromagnetic field

Part V Visualization attributes
& Optimization technique

Part VI Advanced features

PART 1

Detector Description: Detector Description:
the Basicsthe Basics

Concepts for Detector Concepts for Detector
DescriptionDescription

The following concepts will be described:
Unit system
Material
Detector Geometry
Sensitive Volumes
Hits

5

Unit systemUnit system
Geant4 has no default unit. To create a physical
quantity, a number must be “multiplied” by the
unit.

for example :
G4double width = 12.5*m;
G4double density = 2.7*g/cm3;

If no unit is specified, the internal G4 unit will be used,
but this is discouraged, as the default could change!
Almost all commonly used units are available.
The user can define new units.
Refer to CLHEP: SystemOfUnits.h

To print, divide a variable by the unit you want:
G4cout << dE / MeV << “ (MeV)” << G4endl;

6

HEP system of UnitsHEP system of Units
System of units are defined in CLHEP, based on:

millimetre (mm), nanosecond (ns), Mega eV (MeV),
positron charge (eplus) degree Kelvin (kelvin),
the amount of substance (mole), luminous intensity (candela),
radian (radian), steradian (steradian).

All other units are computed from the basic ones.
In output, Geant4 can choose the most appropriate unit to
use.

Just specify the category for the data: Length, Time,
Energy, .. :

G4cout << G4BestUnit(StepSize, “Length”);

StepSize will be printed in km, m, mm or … fermi,
depending on its value

7

Defining new unitsDefining new units
New units can be defined directly as constants, or (suggested
way) via G4UnitDefinition.

G4UnitDefinition (name, symbol, category, value)

Example (mass thickness):
G4UnitDefinition (“grammpercm2”, “g/cm2”,

“MassThickness”, g/cm2);

The new category “MassThickness” will be registered in the
kernel in G4UnitsTable

To print the list of units:
From the code
G4UnitDefinition::PrintUnitsTable();

At run-time, as UI command:
Idle> /units/list

8

Definition of MaterialsDefinition of Materials

Different kinds of materials can be defined:
isotopes <> G4Isotope
elements <> G4Element
molecules <> G4Material
compounds and mixtures <> G4Material

Attributes associated:
temperature, pressure, state, density

9

Isotopes, Elements and MaterialsIsotopes, Elements and Materials

G4Isotope and G4Element describe the
properties of the atoms:

Atomic number, number of nucleons, mass of a mole,
shell energies
Cross-sections per atoms, etc…

G4Material describes the macroscopic properties
of the matter:

temperature, pressure, state, density
Radiation length, absorption length, etc…

10

Elements & IsotopesElements & Isotopes

Isotopes can be assembled into elements
G4Isotope (const G4String& name,

G4int z, // number of atoms
G4int n, // number of nucleons

G4double a); // mass of mole

… building elements as follows:
G4Element (const G4String& name,

const G4String& symbol, // element symbol
G4int nIso); // # of isotopes

G4Element::AddIsotope(G4Isotope* iso, // isotope

G4double relAbund); // fraction of atoms
// per volume

11

Material of one elementMaterial of one element

Single element material
G4double density = 1.390*g/cm3;
G4double a = 39.95*g/mole;
G4Material* lAr =
new
G4Material("liquidArgon",z=18.,a,density);

Note that ‘total’ vacuum is not allowed
Must use low-density gas

12

Material: moleculeMaterial: molecule

A Molecule is made of several elements
(composition by number of atoms):
a = 1.01*g/mole;
G4Element* elH =

new G4Element("Hydrogen",symbol="H",z=1.,a);
a = 16.00*g/mole;
G4Element* elO =

new G4Element("Oxygen",symbol="O",z=8.,a);
density = 1.000*g/cm3;

G4Material* H2O =
new G4Material("Water",density,ncomp=2);

H2O->AddElement(elH, natoms=2);
H2O->AddElement(elO, natoms=1);

13

Material: compound Material: compound
Compound: composition by fraction of mass
a = 14.01*g/mole;
G4Element* elN =

new G4Element(name="Nitrogen",symbol="N",z=
7.,a);

a = 16.00*g/mole;
G4Element* elO =

new G4Element(name="Oxygen",symbol="O",z= 8.,a);
density = 1.290*mg/cm3;

G4Material* Air =
new G4Material(name="Air",density,ncomponents=2);

Air->AddElement(elN, 70.0*perCent);
Air->AddElement(elO, 30.0*perCent);

14

Material: mixtureMaterial: mixture

Composition of compound materials

G4Element* elC = …; // define “carbon” element
G4Material* SiO2 = …; // define “quartz” material
G4Material* H2O = …; // define “water” material

density = 0.200*g/cm3;
G4Material* Aerog =

new G4Material("Aerogel",density,ncomponents=3);
Aerog->AddMaterial(SiO2,fractionmass=62.5*perCent);
Aerog->AddMaterial(H2O ,fractionmass=37.4*perCent);
Aerog->AddElement (elC ,fractionmass= 0.1*perCent);

15

Example: gasExample: gas
It may be necessary to specify temperature and
pressure

(dE/dx computation affected)

G4double density = 27.*mg/cm3;
G4double temperature = 325.*kelvin;
G4double pressure = 50.*atmosphere;

G4Material* CO2 =
new G4Material(“CarbonicGas", density, ncomponents=2

kStateGas, temperature, pressure);
CO2->AddElement(C, natoms = 1);
CO2->AddElement(O, natoms = 2);

16

Example: vacuumExample: vacuum

Absolute vacuum does not exist. It is a gas at very low
density !

Cannot define materials composed of multiple elements through Z
or A, or with ρ = 0.

G4double atomicNumber = 1.;
G4double massOfMole = 1.008*g/mole;
G4double density = 1.e-25*g/cm3;
G4double temperature = 2.73*kelvin;
G4double pressure = 3.e-18*pascal;
G4Material* Vacuum =

new G4Material(“interGalactic", atomicNumber,
massOfMole, density, kStateGas,
temperature, pressure);

PART Ib

Creating a Detector Creating a Detector
or Setupor Setup

18

Describe your detectorDescribe your detector
Derive your own concrete class from
G4VUserDetectorConstruction abstract base class.
Key: Implementing the method Construct():

You can structure it to do all that is necessary:
Construct all necessary materials
Define the shapes / solids that you need
Construct and place the volumes of your detector / setup
Define sensitive detectors and identify detector volumes which
to associate them
Associate a field to detector regions
Define visualization attributes for the detector elements

Or you can structure it in pieces, one for each detector
component or sub-detector:

19

Creating a Detector VolumeCreating a Detector Volume

Start with its Shape & Size
Box 3x5x7 cm, sphere R=8m

Add properties:
material, B/E field,
make it sensitive

Place it in another volume
in one place
repeatedly using a function

Solid

Logical-Volume

Physical-Volume

20

Define detector geometryDefine detector geometry
Three conceptual layers

G4VSolid -- shape, size
G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.
G4VPhysicalVolume -- position, rotation

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

21

Define detector geometryDefine detector geometry
Basic strategy
G4VSolid* pBoxSolid =

new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m);
G4LogicalVolume* pBoxLog =
new G4LogicalVolume(pBoxSolid, pBoxMaterial,

“aBoxLog”);
G4VPhysicalVolume* aBoxPhys =

new G4PVPlacement(pRotation,
G4ThreeVector(posX, posY, posZ),
pBoxLog, “aBoxPhys”, pMotherLog,

0, copyNo);

A unique physical volume which represents the experimental area must exist
and fully contains all other components

The world volume

PART II

Detector Description: Detector Description:
Logical and Physical VolumesLogical and Physical Volumes

23

G4LogicalVolumeG4LogicalVolume
G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial,

const G4String& name, G4FieldManager* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits* pULimits=0,
G4bool optimise=true);

Contains all information of volume except position:
Shape and dimension (G4VSolid)
Material, sensitivity, visualization attributes
Magnetic field, User limits
Identity of daughter volumes
Shower parameterisation

Physical volumes of the same type can share a logical volume.
The pointers to solid and material must NOT be null
Further details:

Once created a LV is automatically entered in the LV store
It is not meant to act as a base class

24

G4VPhysicalVolumeG4VPhysicalVolume
G4PVPlacement 1 Placement = One Volume

A volume instance positioned once in a mother volume
G4PVReplica 1 Replica = Many Volumes

Slicing a volume into smaller pieces (if it has a symmetry)
G4PVParameterised 1 Parameterised = Many Volumes

Parameterised by the copy number
Shape, size, material, position and rotation can be parameterised, by
implementing a concrete class of G4VPVParameterisation.

Reduction of memory consumption
Currently: parameterisation can be used only for volumes that either a)
have no further daughters or b) are identical in size & shape.

25

Physical VolumesPhysical Volumes
Placement: it is one positioned volume

Is it the most common and well suited for most usage.

Repeated: it is a volume placed many times
A replica or parameterised can represent any number of
volumes
It reduces the amount of memory used.
So it is best suited where a large number of similar
volumes must be created.

NOTE: A mother volume can contain either
many placement volumes OR
one repeated volume

repeated

placement

26

G4PVPlacementG4PVPlacement
G4PVPlacement(G4RotationMatrix* pRot,

const G4ThreeVector& translation,
G4LogicalVolume* pCurrentLogical,
const G4String& pName,
G4LogicalVolume* pMotherLogical,
G4bool pMany,
G4int pCopyNo);

A single volume positioned relatively to the mother volume
In a frame translated and rotated relative to the coordinate system of the
mother volume

Three additional constructors:
Using G4Transform3D to represent the direct rotation and translation of the
solid instead of the frame
A simple variation: specifying the mother volume as a pointer to its physical
volume instead of its logical volume (likely to become obsolescent).
The combination of the two variants above (ditto)

Parameterised Physical VolumesParameterised Physical Volumes
User written functions define:

the size of the solid (dimensions)
Function ComputeDimensions(…)

where it is positioned (transformation)
Function ComputeTransformations(…)

Optional:
the type of the solid

Function ComputeSolid(…)
the material

Function ComputeMaterial(…)

Limitations:
Applies to simple CSG solids only
Daughter volumes allowed only for special cases

Very powerful
Consider parameterised volumes as “leaf” volumes

Uses of Parameterized VolumesUses of Parameterized Volumes

Complex detectors
with large repetition of volumes

regular or irregular

Medical applications
the material in animal tissue is measured.
G4 geometry: cubes with varying material

29

G4PVParameterisedG4PVParameterised
G4PVParameterised(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
G4VPVParameterisation* pParam);

Replicates the volume nReplicas times using the parameterisation pParam,
within the mother volume pMotherLogical
The positioning of the replicas is dominant along the specified Cartesian axis

If kUndefined is specified as axis, 3D voxelisation for optimisation of the
geometry is adopted

Represents many touchable detector elements differing in their positioning
and dimensions. Both are calculated by means of a G4VPVParameterisation
object
Alternative constructor using pointer to physical volume for the mother

30

ParameterisationParameterisation
example example -- 11

G4VSolid* solidChamber = new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

new G4LogicalVolume(solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4double firstPosition = -trackerSize + 0.5*ChamberWidth;

G4double firstLength = fTrackerLength/10;

G4double lastLength = fTrackerLength;

G4VPVParameterisation* chamberParam =

new ChamberParameterisation(NbOfChambers, firstPosition,

ChamberSpacing, ChamberWidth,

firstLength, lastLength);

G4VPhysicalVolume* physChamber =

new G4PVParameterised("Chamber", logicChamber, logTracker,

kZAxis, NbOfChambers, chamberParam);

Use kUndefined for activating 3D voxelisation for optimisation

31

ParameterisationParameterisation
example example -- 22

class ChamberParameterisation : public G4VPVParameterisation

{

public:

ChamberParameterisation(G4int NoChambers, G4double startZ,

G4double spacing, G4double widthChamber,

G4double lenInitial, G4double lenFinal);

~ChamberParameterisation();

void ComputeTransformation (const G4int copyNo,

G4VPhysicalVolume* physVol) const;

void ComputeDimensions (G4Box& trackerLayer, const G4int copyNo,

const G4VPhysicalVolume* physVol) const;

:

}

32

ParameterisationParameterisation
example example -- 33

void ChamberParameterisation::ComputeTransformation

(const G4int copyNo, G4VPhysicalVolume* physVol) const

{

G4double Zposition= fStartZ + (copyNo+1) * fSpacing;

G4ThreeVector origin(0, 0, Zposition);

physVol->SetTranslation(origin);

physVol->SetRotation(0);

}

void ChamberParameterisation::ComputeDimensions

(G4Box& trackerChamber, const G4int copyNo,

const G4VPhysicalVolume* physVol) const

{

G4double halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr;

trackerChamber.SetXHalfLength(halfLength);

trackerChamber.SetYHalfLength(halfLength);

trackerChamber.SetZHalfLength(fHalfWidth);

}

Replicated Physical VolumesReplicated Physical Volumes

repeated

The mother volume is sliced into replicas, all
of the same size and dimensions (except R).
Represents many touchable detector
elements differing only in their positioning.
Replication may occur along:

Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

Coordinate system at the center of each replica
Radial axis (Rho) – cons/tubs sections centered
on the origin and un-rotated

Coordinate system same as the mother
Phi axis (Phi) – phi sections or wedges, of
cons/tubs form

Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

34

G4PVReplicaG4PVReplica
G4PVReplica(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
const G4double width,
const G4double offset=0);

Alternative constructor: using pointer to physical volume for the mother
An offset can only be associated to a phi-replication, where the mother
solid has an offset along this axis
Features and restrictions:

Replicas can be placed inside other replicas
Normal placement volumes can be placed inside replicas, assuming no
intersection/overlaps with the mother volume or with other replicas
No volume can be placed inside a radial replication
Parameterised volumes cannot be placed inside a replica

35

ReplicationReplication
exampleexample

G4double tube_dPhi = 2.* M_PI;
G4VSolid* tube =
new G4Tubs("tube", 20*cm, 50*cm, 30*cm, 0., tube_dPhi*rad);

G4LogicalVolume * tube_log =
new G4LogicalVolume(tube, Ar, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =
new G4PVPlacement(0,G4ThreeVector(-200.*cm, 0., 0.*cm),

"tubeP", tube_log, world_phys, false, 0);
G4double divided_tube_dPhi = tube_dPhi/6.;
G4VSolid* divided_tube =
new G4Tubs("divided_tube", 20*cm, 50*cm, 30*cm,

-divided_tube_dPhi/2.*rad, divided_tube_dPhi*rad);
G4LogicalVolume* divided_tube_log =
new G4LogicalVolume(divided_tube, Ar, "div_tubeL", 0, 0, 0);

G4VPhysicalVolume* divided_tube_phys =
new G4PVReplica("divided_tube_phys", divided_tube_log, tube_log,

kPhi, 6, divided_tube_dPhi);

PART III

Detector Description: Detector Description:
Solids & TouchablesSolids & Touchables

G4VSolidG4VSolid
Abstract class. All solids in
Geant4 derive from it

Defines but does not implement
all functions required to:

compute distances to/from the
shape
check whether a point is inside
the shape
compute the extent of the
shape
compute the surface normal to
the shape at a given point

Once constructed, each solid
is automatically registered in
a specific solid store

SolidsSolids
Solids defined in Geant4:

CSG (Constructed Solid Geometry) solids
G4Box, G4Tubs, G4Cons, G4Trd, …
Analogous to simple GEANT3 CSG solids

Specific solids (CSG like)
G4Polycone, G4Polyhedra, G4Hype, …

BREP (Boundary REPresented) solids
G4BREPSolidPolycone, G4BSplineSurface, …
Any order surface

Boolean solids
G4UnionSolid, G4SubtractionSolid, …

STEP interface
to import BREP solid models from CAD systems
- STEP compliant solid modeler

39

CSG: G4Tubs, G4ConsCSG: G4Tubs, G4Cons

G4Tubs(const G4String& pname, // name
G4double pRmin, // inner radius
G4double pRmax, // outer radius
G4double pDz, // Z half length
G4double pSphi, // starting Phi
G4double pDphi); // segment angle

G4Cons(const G4String& pname, // name
G4double pRmin1, // inner radius -pDz
G4double pRmax1, // outer radius -pDz
G4double pRmin2, // inner radius +pDz
G4double pRmax2, // outer radius +pDz
G4double pDz, // Z half length
G4double pSphi, // starting Phi
G4double pDphi); // segment angle

40

Specific CSG Solids: G4PolyconeSpecific CSG Solids: G4Polycone
G4Polycone(const G4String& pName,

G4double phiStart,
G4double phiTotal,

G4int numRZ,
const G4double r[],
const G4double z[]);

numRZ - numbers of corners in the r,z space
r, z - coordinates of corners

Additional constructor using planes

41

BREP SolidsBREP Solids

BREP = Boundary REPresented Solid
Listing all its surfaces specifies a solid

e.g. 6 squares for a cube
Surfaces can be

planar, 2nd or higher order
elementary BREPS

Splines, B-Splines,
NURBS (Non-Uniform B-Splines)

advanced BREPS

Few elementary BREPS pre-defined
box, cons, tubs, sphere, torus, polycone, polyhedra

Advanced BREPS built through CAD systems

42

BREPS:BREPS:
G4BREPSolidPolyhedraG4BREPSolidPolyhedra

G4BREPSolidPolyhedra(const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int sides,
G4int nZplanes,
G4double zStart,

const G4double zval[],
const G4double rmin[],
const G4double rmax[]);

sides - numbers of sides of each polygon in the x-y plane
nZplanes - numbers of planes perpendicular to the z axis
zval[] - z coordinates of each plane
rmin[], rmax[] - Radii of inner and outer polygon at each plane

43

Boolean SolidsBoolean Solids

Solids can be combined using boolean operations:
G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

Requires: 2 solids, 1 boolean operation, and an (optional) transformation
for the 2nd solid

2nd solid is positioned relative to the coordinate system of the 1st solid

Example:
G4Box box(“Box", 20, 30, 40);
G4Tubs cylinder(“Cylinder”, 0, 50, 50, 0, 2*M_PI); // r: 0 -> 50

// z: -50 -> 50
// phi: 0 -> 2 pi

G4UnionSolid union("Box+Cylinder", &box, &cylinder);
G4IntersectionSolid intersect("Box Intersect Cylinder", &box, &cylinder);
G4SubtractionSolid subtract("Box-Cylinder", &box, &cylinder);

Solids can be either CSG or other Boolean solids
Note: tracking cost for the navigation in a complex Boolean solid is
proportional to the number of constituent solids

How to identify a volume uniquely?How to identify a volume uniquely?

• Need to identify a volume uniquely
• Is a physical volume pointer enough? NO!

TouchableTouchable55

44

44

44

11

55 11

22

3344

pPVpPV

LaterLater

StepStep

• Touchable
22

55

45

What can a touchable do ?What can a touchable do ?

All generic touchables can reply to these queries:
positioning information (rotation, position)

GetTranslation(), GetRotation()

Specific types of touchable also know:
(solids) - their associated shape: GetSolid()
(volumes) - their physical volume: GetVolume()
(volumes) - their replication number: GetReplicaNumber()
(volumes hierarchy or touchable history):

info about its hierarchy of placements: GetHistoryDepth()
At the top of the history tree is the world volume

modify/update touchable: MoveUpHistory(), UpdateYourself()
take additional arguments

Benefits of Touchables in trackBenefits of Touchables in track

Permanent information stored
unlike “live” volume tree

which the Navigator creates

Full geometrical information available
to processes
to sensitive detectors
to user actions ••A1A1 ••A2A2

47

Touchable Touchable -- 11
G4Step has two G4StepPoint objects as its starting and ending
points. All the volume information of the particular step should be
taken from “PreStepPoint”

Geometrical information associated with G4Track is basically same as
“PostStepPoint”

Each G4StepPoint object has:
position in world coordinate system
global and local time
material
G4TouchableHistory for geometrical information

Since release 4.0, handles (or smart-pointers) to touchables are used.
So touchables are reference counted
A touchable lives as long as another object keeps a handle to it.

48

Touchable Touchable -- 22

G4TouchableHistory has the full information of the
geometrical hierarchy of the current volume

G4Step* aStep = ..;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHandle theTouchable = preStepPoint->GetTouchableHandle();

G4int copyNo = theTouchable->GetReplicaNumber();

G4int motherCopyNo = theTouchable->GetReplicaNumber(1);

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()->

GetTopTransform().TransformPoint(worldPos);

PART IV

Electromagnetic Fields Electromagnetic Fields

Detector sensitivityDetector sensitivity
A logical volume becomes sensitive if it has a
pointer to a concrete class derived from
G4VSensitiveDetector.
A sensitive detector either

constructs one or more hit objects or
accumulates values to existing hits

using information given in a G4Step object.

NOTE: you must get the volume information
from the “PreStepPoint”.

Sensitive detector and HitSensitive detector and Hit
Each “Logical Volume” can have a pointer to a
sensitive detector.
Hit is a snapshot of the physical interaction of a
track or an accumulation of interactions of tracks
in the sensitive region of your detector.
A sensitive detector creates hit(s) using the
information given in G4Step object. The user has
to provide his/her own implementation of the
detector response.
Hit objects, which still are the user’s class objects,
are collected in a G4Event object at the end of an
event.

The UserSteppingAction class should NOT do this.

Hit classHit class
Hit is a user-defined class derived from G4VHit.
You can store various types information by
implementing your own concrete Hit class.
For example:

Position and time of the step
Momentum and energy of the track
Energy deposition of the step
Geometrical information
or any combination of above

Hit classHit class
Hit objects of a concrete hit class must be stored
in a dedicated collection which is instantiated
from G4THitsCollection template class.
The collection will be associated to a G4Event
object via G4HCofThisEvent.
Hits collections are accessible

through G4Event at the end of event,
through G4SDManager during processing an event.
--> Used for Event filtering.

Readout geometry Readout geometry
Readout geometry is a virtual and artificial
geometry which can be defined in parallel to the
real detector geometry.
A readout geometry is optional.
Each one is associated to a sensitive detector.

DigitizationDigitization
Digit represents a detector output (e.g.
ADC/TDC count, trigger signal).
Digit is created with one or more hits and/or
other digits by a concrete implementation derived
from G4VDigitizerModule.
In contradiction to the Hit which is generated at
tracking time automatically, the digitize() method
of each G4VDigitizerModule must be
explicitly invoked by the user’s code (e.g.
EventAction).

Defining a sensitive detectorDefining a sensitive detector

Basic strategy

G4LogicalVolume* myLogCalor = ……;
G4VSensitiveDetector* pSensitivePart =

new MyCalorimeterSD(“/mydet/calorimeter”);
G4SDManager* SDMan = G4SDManager::GetSDMpointer();
SDMan->AddNewDetector(pSensitivePart);

myLogCalor->SetSensitiveDetector(pSensitivePart);

Magnetic fieldMagnetic field
In order to propagate a particle inside a field (e.g.
magnetic, electric or both), we integrate the
equation of motion of the particle in the field.
In general this is best done using a Runge-Kutta
method for the integration of ordinary differential
equations. Several Runge-Kutta methods are
available.
In specific cases other solvers can also be used:

In a uniform field, as the analytical solution is known.
In a nearly uniform field, where we perturb it.

Magnetic fieldMagnetic field
Once a method is chosen that allows G4 to
calculate the track's motion in a field, we break
up this curved path into linear chord segments.

We determine the chord segments so that they
closely approximate the curved path.
We use the chords to interrogate the Navigator,
to see whether the track has crossed a volume
boundary.

Magnetic fieldMagnetic field
You can set the accuracy of the volume intersection,

by setting a parameter called the “miss distance”
it is a measure of the error in whether the approximate track
intersects a volume.
Default “miss distance” is 3 mm.

One step can consist of more than one chords.
In some cases, one step consists of several turns.

miss distance

Step
Chords

real trajectory

Magnetic fieldMagnetic field
Magnetic field class

Uniform field :
G4UniformMagField class object

Non-uniform field :
Concrete class derived from G4MagneticField

Set it to G4FieldManager and create a Chord
Finder.

G4FieldManager* fieldMgr =

G4TransportationManager::GetTransportationManager()
->GetFieldManager();

fieldMgr->SetDetectorField(magField);

fieldMgr->CreateChordFinder(magField);

PART V

Detector Description: Detector Description:
Visualization attributesVisualization attributes

& optimization technique& optimization technique

Visualization of DetectorVisualization of Detector

Each logical volume can have associated a
G4VisAttributes object

Visibility, visibility of daughter volumes
Color, line style, line width
Force flag to wire-frame or solid-style mode

For parameterised volumes, attributes can be
dynamically assigned to the logical volume
Lifetime of visualization attributes must be at least
as long as the objects they’re assigned to

Visualization of Hits and Visualization of Hits and
TrajectoriesTrajectories

Each G4VHit concrete class must have an
implementation of Draw() method.

Colored marker
Colored solid
Change the color of detector element

G4Trajectory class has a Draw() method.
Blue : positive
Green : neutral
Red : negative
You can implement alternatives by yourself

Volume Intersection Volume Intersection
OptimisationOptimisation

Encountering volumes is very costly
for simple physics it can take 80% of CPU time
Must try to avoid intersection calculations

‘Smart voxels’ optimise intersections
Much less need to tune geometry
Can handle ‘flat’ CAD geometries

Smart Smart voxelsvoxels
For each mother volume

a one-dimensional virtual division is performed
the virtual division is along a chosen axis
the axis is chosen by using an heuristic

Subdivisions (slices) containing same volumes are
gathered into one
Subdivisions containing many volumes are refined

applying a virtual division again using a second Cartesian axis
the third axis can be used for a further refinement, in case

Smart voxels are computed at initialisation time
When the detector geometry is closed
Do not require large memory or computing resources
At tracking time, searching is done in a hierarchy of
virtual divisions

66

Detector description tuningDetector description tuning

Some geometry topologies may require ‘special’ tuning for
ideal and efficient optimisation

for example: a dense nucleus of volumes included in very large mother
volume

Granularity of voxelisation can be explicitly set
Methods Set/GetSmartless() from G4LogicalVolume

Critical regions for optimisation can be detected
Helper class G4SmartVoxelStat for monitoring time spent in detector
geometry optimisation

Automatically activated if /run/verbose greater than 1

Percent Memory Heads Nodes Pointers Total CPU Volume
------- ------ ----- ----- -------- --------- -----------

91.70 1k 1 50 50 0.00 Calorimeter

8.30 0k 1 3 4 0.00 Layer

67

Visualising Visualising voxelvoxel structurestructure

The computed voxel structure can be visualized with the final
detector geometry

Helper class G4DrawVoxels
Visualize voxels given a logical volume

G4DrawVoxels::DrawVoxels(const G4LogicalVolume*)

Allows setting of visualization attributes for voxels
G4DrawVoxels::SetVoxelsVisAttributes(…)

useful for debugging purposes
Can also be done through a visualization command at run-
time:

/vis/scene/add/logicalVolume <logical-volume-name> [<depth>]

68

Customising optimisationCustomising optimisation

Detector regions may be excluded from optimisation
(ex. for debug purposes)

Optional argument in constructor of G4LogicalVolume or
through provided set methods

SetOptimisation/IsToOptimise()

Optimisation is turned on by default
Optimisation for parameterised volumes can be chosen

Along one single Cartesian axis
Specifying the axis in the constructor for G4PVParameterised

Using 3D voxelisation along the 3 Cartesian axes
Specifying in kUndefined in the constructor for G4PVParameterised

PART VI

Detector Description: Detector Description:
Advanced featuresAdvanced features

Detector DescriptionDetector Description
Advanced featuresAdvanced features

Debugging tools
Grouping volumes
Reflections of volumes and hierarchies
User defined solids
Interface to CAD systems

71

Debugging geometriesDebugging geometries

An overlapping volume is a contained volume which actually
protrudes from its mother volume

Volumes are also often positioned in a same volume with the intent of
not provoking intersections between themselves. When volumes in a
common mother actually intersect themselves are defined as
overlapping

Geant4 does not allow for malformed geometries
The problem of detecting overlaps between volumes is
influenced by the complexity of the solid models description
Utilities are provided for detecting wrong positioning

Graphical tools (DAVID & OLAP)
Kernel run-time commands

72

Debugging tools: DAVIDDebugging tools: DAVID
DAVID is a graphical debugging tool for detecting
potential intersections of volumes

It intersects volumes directly, using their graphical
representations.

Accuracy of the graphical representation can be
tuned to the exact geometrical description.

physical-volume surfaces are automatically
decomposed into 3D polygons
intersections of the generated polygons are parsed.
If a polygon intersects with another one, the
physical volumes associated to these polygons are
highlighted in color (red is the default).

DAVID can be downloaded from the Web as
external tool for Geant4

http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html

73

Debugging runDebugging run--time commandstime commands

Built-in run-time commands to activate verification tests for the user
geometry are defined

geometry/test/run or geometry/test/grid_test
to start verification of geometry for overlapping regions based on a standard grid
setup, limited to the first depth level

geometry/test/recursive_test

applies the grid test to all depth levels (may require lots of CPU time!)
geometry/test/cylinder_test

shoots lines according to a cylindrical pattern
geometry/test/line_test

to shoot a line along a specified direction and position
geometry/test/position

to specify position for the line_test
geometry/test/direction

to specify direction for the line_test

74

Debugging runDebugging run--time commandstime commands -- 22

Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes

The volumes Tracker[0] and Overlap[0],
both daughters of volume World[0],
appear to overlap at the following points in global coordinates: (list truncated)

length (cm) ----- start position (cm) ----- ----- end position (cm) -----
240 -240 -145.5 -145.5 0 -145.5 -145.5

Which in the mother coordinate system are:
length (cm) ----- start position (cm) ----- ----- end position (cm) -----

. . .
Which in the coordinate system of Tracker[0] are:

length (cm) ----- start position (cm) ----- ----- end position (cm) -----
. . .

Which in the coordinate system of Overlap[0] are:
length (cm) ----- start position (cm) ----- ----- end position (cm) -----

. . .

75

Debugging tools: OLAPDebugging tools: OLAP

Uses tracking of neutral particles to verify
boundary crossing in opposite directions
Stand-alone batch application

Provided as extended example
Can be combined with a graphical environment and
GUI (ex. Qt library)
Integrated in the CMS Iguana Framework

76

Debugging tools: OLAPDebugging tools: OLAP

Grouping volumesGrouping volumes

To represent a regular pattern of positioned
volumes, composing a more or less complex
structure

structures which are hard to describe with simple
replicas or parameterised volumes
structures which may consist of different shapes

Assembly volume
acts as an envelope for its daughter volumes
its role is over once its logical volume has been placed
daughter physical volumes become independent copies
in the final structure

78

G4AssemblyVolumeG4AssemblyVolume
G4AssemblyVolume(G4LogicalVolume* volume,

G4ThreeVector& translation,
G4RotationMatrix* rotation);

Helper class to combine logical volumes in arbitrary way
Participating logical volumes are treated as triplets

logical volume, translation, rotation
Imprints of the assembly volume are made inside a mother logical volume
through G4AssemblyVolume::MakeImprint(…)
Each physical volume name is generated automatically

Format: av_WWW_impr_XXX_YYY_ZZZ
WWW – assembly volume instance number
XXX – assembly volume imprint number
YYY – name of the placed logical volume in the assembly
ZZZ – index of the associated logical volume

Generated physical volumes (and related transformations) are automatically
managed (creation and destruction)

79

Assembly of volumes:Assembly of volumes:
example example --11

// Define a plate
G4VSolid* PlateBox = new G4Box("PlateBox", plateX/2., plateY/2., plateZ/2.);
G4LogicalVolume* plateLV = new G4LogicalVolume(PlateBox, Pb, "PlateLV", 0, 0, 0);

// Define one layer as one assembly volume
G4AssemblyVolume* assemblyDetector = new G4AssemblyVolume();

// Rotation and translation of a plate inside the assembly
G4RotationMatrix Ra; G4ThreeVector Ta;

// Rotation of the assembly inside the world
G4RotationMatrix Rm;

// Fill the assembly by the plates
Ta.setX(caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(-1*caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(-1*caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));

// Now instantiate the layers
for(unsigned int i = 0; i < layers; i++) {

// Translation of the assembly inside the world
G4ThreeVector Tm(0,0,i*(caloZ + caloCaloOffset) - firstCaloPos);
assemblyDetector->MakeImprint(worldLV, G4Transform3D(Rm,Tm));

}

Assembly of volumes: example Assembly of volumes: example --22

81

Reflecting solidsReflecting solids

G4ReflectedSolid

utility class representing a solid shifted from its
original reference frame to a new reflected one
the reflection (G4Reflect[X/Y/Z]3D) is applied as
a decomposition into rotation and translation

G4ReflectionFactory

Singleton object using G4ReflectedSolid for
generating placements of reflected volumes

Reflections can be applied to CSG and specific solids

82

Reflecting hierarchies of volumes Reflecting hierarchies of volumes -- 11

G4ReflectionFactory::Place(…)
Used for normal placements:

i. Performs the transformation decomposition
ii. Generates a new reflected solid and logical volume

Retrieves it from a map if the reflected object is already created
iii. Transforms any daughter and places them in the given mother
iv. Returns a pair of physical volumes, the second being a placement in the

reflected mother
G4PhysicalVolumesPair
Place(const G4Transform3D& transform3D, // the transformation

const G4String& name, // the actual name
G4LogicalVolume* LV, // the logical volume
G4LogicalVolume* motherLV, // the mother volume
G4bool noBool, // currently unused
G4int copyNo) // optional copy number

83

Reflecting hierarchies of volumes Reflecting hierarchies of volumes -- 22

G4ReflectionFactory::Replicate(…)

Creates replicas in the given mother volume
Returns a pair of physical volumes, the second being a replica in the
reflected mother

G4PhysicalVolumesPair

Replicate(const G4String& name, // the actual name
G4LogicalVolume* LV, // the logical volume

G4LogicalVolume* motherLV, // the mother volume
Eaxis axis // axis of replication
G4int replicaNo // number of replicas

G4int width, // width of single replica

G4int offset=0) // optional mother offset

84

User defined solidsUser defined solids

All solids should derive from G4VSolid and
implement its abstract interface

will guarantee the solid is treated as any other solid
predefined in the kernel

Basic functionalities required for a solid
Compute distances to/from the shape
Detect if a point is inside the shape
Compute the surface normal to the shape at a given point
Compute the extent of the shape
Provide few visualization/graphics utilities

85

What a solid should reply toWhat a solid should reply to……-- 11

EInside Inside(const G4ThreeVector& p) const;

Should return, considering a predefined tolerance:
kOutside - if the point at offset p is outside the shapes boundaries
kSurface - if the point is close less than Tolerance/2 from the surface
kInside - if the point is inside the shape boundaries

G4ThreeVector SurfaceNormal(const G4ThreeVector& p) const;

Should return the outwards pointing unit normal of the shape for the surface
closest to the point at offset p.

G4double DistanceToIn(const G4ThreeVector& p,
const G4ThreeVector& v) const;

Should return the distance along the normalized vector v to the shape from the
point at offset p. If there is no intersection, returns kInfinity. The first
intersection resulting from ‘leaving' a surface/volume is discarded. Hence, it is
tolerant of points on the surface of the shape

86

What a solid should reply toWhat a solid should reply to……-- 22
G4double DistanceToIn(const G4ThreeVector& p) const;

Calculates the distance to the nearest surface of a shape from an outside point p. The
distance can be an underestimate

G4double DistanceToOut(const G4ThreeVector& p,

const G4ThreeVector& v,
const G4bool calcNorm=false,

G4bool* validNorm=0,

G4ThreeVector* n=0) const;

Returns the distance along the normalised vector v to the shape, from a point at an
offset p inside or on the surface of the shape. Intersections with surfaces, when the
point is less than Tolerance/2 from a surface must be ignored. If calcNorm is true,
then it must also set validNorm to either:

True - if the solid lies entirely behind or on the exiting surface. Then it must set n to the
outwards normal vector (the Magnitude of the vector is not defined)
False - if the solid does not lie entirely behind or on the exiting surface

G4double DistanceToOut(const G4ThreeVector& p) const;

Calculates the distance to the nearest surface of a shape from an inside point p. The distance can
be an underestimate

87

Solid: more functionsSolid: more functions……

G4bool CalculateExtent(const EAxis pAxis,
const G4VoxelLimits& pVoxelLimit,
const G4AffineTransform& pTransform,

G4double& pMin, G4double& pMax) const;

Calculates the minimum and maximum extent of the solid, when under the specified
transform, and within the specified limits. If the solid is not intersected by the region, return
false, else return true

Member functions for the purpose of visualization:

void DescribeYourselfTo (G4VGraphicsScene& scene) const;

“double dispatch” function which identifies the solid to the graphics scene

G4VisExtent GetExtent () const;

Provides extent (bounding box) as possible hint to the graphics view

Interface to CAD systemsInterface to CAD systems
Models imported from CAD systems can describe the
solid geometry of detectors made by large number of
elements with the greatest accuracy and detail

A solid model contains the purely geometrical data
representing the solids and their position in a given
reference frame

Solid descriptions of detector models can be imported
from CAD systems

e.g. Euclid & Pro/Engineer
using STEP AP203 compliant protocol

Tracking in BREP solids created through CAD
systems is supported

How to import CAD geometriesHow to import CAD geometries

Detector geometry description should be modularized
By sub-detector and sub-detector components
Each component in a separate STEP file

G4AssemblyCreator and G4Assembly classes from the
STEPinterface module should be used to read a STEP
file generated by a CAD system and create the
assembled geometry in Geant4

Geometry is generated and described through BREP shapes
Geometry modules for each component are assembled in
the user code

90

Importing STEP models:Importing STEP models:
example example --11

G4AssemblyCreator MyAC("tracker.stp");
// Associate a creator to a given STEP file.

MyAC.ReadStepFile();
// Reads the STEP file.

STEPentity* ent=0;
// No predefined STEP entity in this example.
// A dummy pointer is used.

MyAC.CreateG4Geometry(*ent);
// Generates GEANT4 geometry objects.

void *pl = MyAC.GetCreatedObject();
// Retrieve vector of placed entities.

G4Assembly* assembly = new G4Assembly();
// An assembly is an aggregation of placed entities.

assembly->SetPlacedVector(*(G4PlacedVector*)pl);
// Initialise the assembly.

91

Importing STEP models:Importing STEP models:
example example -- 22

G4int solids = assembly->GetNumberOfSolids();

// Get the total number of solids among all entities.
for(G4int c=0; c<solids; c++)

// Generate logical volumes and placements for each solid.
{

ps = assembly->GetPlacedSolid(c);

G4LogicalVolume* lv =
new G4LogicalVolume(ps->GetSolid(), Lead, "STEPlog");

G4RotationMatrix* hr = ps->GetRotation();
G4ThreeVector* tr = ps->GetTranslation();
G4VPhysicalVolume* pv =

new G4PVPlacement(hr, *tr, ps->GetSolid()->GetName(),
lv, experimentalHall_phys, false, c);

}

92

GGE (Graphical Geometry Editor)GGE (Graphical Geometry Editor)

Implemented in JAVA, GGE is a graphical geometry
editor compliant to Geant4. It allows to:

Describe a detector geometry including:
materials, solids, logical volumes, placements

Graphically visualize the detector geometry using a Geant4
supported visualization system, e.g. DAWN
Store persistently the detector description
Generate the C++ code according to the Geant4
specifications

GGE can be downloaded from Web as a separate tool:
http://erpc1.naruto-u.ac.jp/~geant4/

93

Visualizing detector geometry treeVisualizing detector geometry tree

Built-in commands defined to display the
hierarchical geometry tree

As simple ASCII text structure
Graphical through GUI (combined with GAG)
As XML exportable format

Implemented in the visualization module
As an additional graphics driver

G3 DTREE capabilities provided and more

94

95

Debugging Debugging
geometriesgeometries

An overlapping volume is a contained volume which actually
protrudes from its mother volume

Volumes are also often positioned in a same volume with the intent of
not provoking intersections between themselves. When volumes in a
common mother actually intersect themselves are defined as
overlapping

Geant4 does not allow for malformed geometries
The problem of detecting overlaps between volumes is
bounded by the complexity of the solid models description
Utilities are provided for detecting wrong positioning

Graphical tools
Kernel run-time commands

	Detector Description
	Detector Description
	PART 1
	Concepts for Detector Description
	Unit system
	HEP system of Units
	Defining new units
	Definition of Materials
	Isotopes, Elements and Materials
	Elements & Isotopes
	Material of one element
	Material: molecule
	Material: compound
	Material: mixture
	Example: gas
	Example: vacuum
	PART Ib
	Describe your detector
	Creating a Detector Volume
	Define detector geometry
	Define detector geometry
	PART II
	G4LogicalVolume
	G4VPhysicalVolume
	Physical Volumes
	G4PVPlacement
	Parameterised Physical Volumes
	Uses of Parameterized Volumes
	G4PVParameterised
	Parameterisationexample - 1
	Parameterisationexample - 2
	Parameterisationexample - 3
	Replicated Physical Volumes
	G4PVReplica
	Replicationexample
	PART III
	G4VSolid
	Solids
	CSG: G4Tubs, G4Cons
	Specific CSG Solids: G4Polycone
	BREP Solids
	BREPS:G4BREPSolidPolyhedra
	Boolean Solids
	How to identify a volume uniquely?
	What can a touchable do ?
	Benefits of Touchables in track
	Touchable - 1
	Touchable - 2
	PART IV
	Detector sensitivity
	Sensitive detector and Hit
	Hit class
	Hit class
	Readout geometry
	Digitization
	Defining a sensitive detector
	Magnetic field
	Magnetic field
	Magnetic field
	Magnetic field
	PART V
	Visualization of Detector
	Visualization of Hits and Trajectories
	Volume Intersection Optimisation
	Smart voxels
	Detector description tuning
	Visualising voxel structure
	Customising optimisation
	PART VI
	Detector DescriptionAdvanced features
	Debugging geometries
	Debugging tools: DAVID
	Debugging run-time commands
	Debugging run-time commands - 2
	Debugging tools: OLAP
	Debugging tools: OLAP
	Grouping volumes
	G4AssemblyVolume
	Assembly of volumes:example -1
	Assembly of volumes: example -2
	Reflecting solids
	Reflecting hierarchies of volumes - 1
	Reflecting hierarchies of volumes - 2
	User defined solids
	What a solid should reply to…- 1
	What a solid should reply to…- 2
	Solid: more functions…
	Interface to CAD systems
	How to import CAD geometries
	Importing STEP models:example -1
	Importing STEP models:example - 2
	GGE (Graphical Geometry Editor)
	Visualizing detector geometry tree
	Debugging geometries

