
Geometry Geometry
and Fields:and Fields:

Further and advanced featuresFurther and advanced features
J. Apostolakis & G. CosmoJ. Apostolakis & G. Cosmo

PART I

Detector DescriptionDetector Description
Advanced featuresAdvanced features

Debugging tools
Creating geometry in simpler way

The Geant4 Geometrical Editor (tabular)
Grouping volumes
Reflections of volumes and hierarchies

User defined solids
Interface to CAD systems

3

Debugging Debugging
geometriesgeometries

An overlapping volume is a contained volume which actually
protrudes from its mother volume

Volumes are also often positioned in a same volume with the intent of
not provoking intersections between themselves. When volumes in a
common mother actually intersect themselves are defined as
overlapping

Geant4 does not allow for malformed geometries
The problem of detecting overlaps between volumes is
bounded by the complexity of the solid models description
Utilities are provided for detecting wrong positioning

Graphical tools (DAVID & OLAP)
Kernel run-time commands

4

Debugging tools: DAVIDDebugging tools: DAVID
DAVID is a graphical debugging tool for detecting
potential intersections of volumes

It intersects volumes directly, using their graphical
representations.

Accuracy of the graphical representation can be
tuned to the exact geometrical description.

physical-volume surfaces are automatically
decomposed into 3D polygons
intersections of the generated polygons are parsed.
If a polygon intersects with another one, the
physical volumes associated to these polygons are
highlighted in color (red is the default).

DAVID can be downloaded from the Web as
external tool for Geant4

http://geant4.kek.jp/GEANT4/vis/DAWN/About_DAVID.html

5

Debugging runDebugging run--time commandstime commands

Built-in run-time commands to activate verification tests for the user
geometry are defined

geometry/test/run or geometry/test/grid_test
to start verification of geometry for overlapping regions based on a standard grid
setup, limited to the first depth level

geometry/test/recursive_test

applies the grid test to all depth levels (may require lots of CPU time!)
geometry/test/cylinder_test

shoots lines according to a cylindrical pattern
geometry/test/line_test

to shoot a line along a specified direction and position
geometry/test/position

to specify position for the line_test
geometry/test/direction

to specify direction for the line_test

6

Debugging runDebugging run--time commandstime commands -- 22

Example layout:

GeomTest: no daughter volume extending outside mother detected.
GeomTest Error: Overlapping daughter volumes

The volumes Tracker[0] and Overlap[0],
both daughters of volume World[0],
appear to overlap at the following points in global coordinates: (list truncated)

length (cm) ----- start position (cm) ----- ----- end position (cm) -----
240 -240 -145.5 -145.5 0 -145.5 -145.5

Which in the mother coordinate system are:
length (cm) ----- start position (cm) ----- ----- end position (cm) -----

. . .
Which in the coordinate system of Tracker[0] are:

length (cm) ----- start position (cm) ----- ----- end position (cm) -----
. . .

Which in the coordinate system of Overlap[0] are:
length (cm) ----- start position (cm) ----- ----- end position (cm) -----

. . .

7

Debugging tools: OLAPDebugging tools: OLAP

Uses tracking of neutral particles to verify
boundary crossing in opposite directions
Stand-alone batch application

Provided as extended example
Can be combined with a graphical environment and
GUI (ex. Qt library)
Integrated in the CMS Iguana Framework

8

Debugging tools: OLAPDebugging tools: OLAP

9

Visualizing detector geometry treeVisualizing detector geometry tree

Built-in commands defined to display the
hierarchical geometry tree

As simple ASCII text structure
Graphical through GUI (combined with GAG)
As XML exportable format

Implemented in the visualization module
As an additional graphics driver

G3 DTREE capabilities provided and more

10

The geometrical tree: example

11

GGE (Graphical Geometry Editor)GGE (Graphical Geometry Editor)

Implemented in JAVA, GGE is a graphical geometry
editor compliant to Geant4. It allows to:

Describe a detector geometry including:
materials, solids, logical volumes, placements

Graphically visualize the detector geometry using a Geant4
supported visualization system, e.g. DAWN
Store persistently the detector description
Generate the C++ code according to the Geant4
specifications

GGE can be downloaded from Web as a separate tool:
http://erpc1.naruto-u.ac.jp/~geant4/

Grouping volumesGrouping volumes

To represent a regular pattern of positioned
volumes, composing a more or less complex
structure

structures which are hard to describe with simple
replicas or parameterised volumes
structures which may consist of different shapes

Assembly volume
acts as an envelope for its daughter volumes
its role is over once its logical volume has been placed
daughter physical volumes become independent copies
in the final structure

13

G4AssemblyVolumeG4AssemblyVolume
G4AssemblyVolume(G4LogicalVolume* volume,

G4ThreeVector& translation,
G4RotationMatrix* rotation);

Helper class to combine logical volumes in arbitrary way
Participating logical volumes are treated as triplets

logical volume, translation, rotation
Imprints of the assembly volume are made inside a mother logical volume
through G4AssemblyVolume::MakeImprint(…)
Each physical volume name is generated automatically

Format: av_WWW_impr_XXX_YYY_ZZZ
WWW – assembly volume instance number
XXX – assembly volume imprint number
YYY – name of the placed logical volume in the assembly
ZZZ – index of the associated logical volume

Generated physical volumes (and related transformations) are automatically
managed (creation and destruction)

14

Assembly of volumes:Assembly of volumes:
example example --11

// Define a plate
G4VSolid* PlateBox = new G4Box("PlateBox", plateX/2., plateY/2., plateZ/2.);
G4LogicalVolume* plateLV = new G4LogicalVolume(PlateBox, Pb, "PlateLV", 0, 0, 0);

// Define one layer as one assembly volume
G4AssemblyVolume* assemblyDetector = new G4AssemblyVolume();

// Rotation and translation of a plate inside the assembly
G4RotationMatrix Ra; G4ThreeVector Ta;

// Rotation of the assembly inside the world
G4RotationMatrix Rm;

// Fill the assembly by the plates
Ta.setX(caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(-1*caloX/4.); Ta.setY(caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(-1*caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));
Ta.setX(caloX/4.); Ta.setY(-1*caloY/4.); Ta.setZ(0.);
assemblyDetector->AddPlacedVolume(plateLV, G4Transform3D(Ra,Ta));

// Now instantiate the layers
for(unsigned int i = 0; i < layers; i++) {

// Translation of the assembly inside the world
G4ThreeVector Tm(0,0,i*(caloZ + caloCaloOffset) - firstCaloPos);
assemblyDetector->MakeImprint(worldLV, G4Transform3D(Rm,Tm));

}

Assembly of volumes: example Assembly of volumes: example --22

16

Reflecting solidsReflecting solids

G4ReflectedSolid

utility class representing a solid shifted from its
original reference frame to a new reflected one
the reflection (G4Reflect[X/Y/Z]3D) is applied as
a decomposition into rotation and translation

G4ReflectionFactory

Singleton object using G4ReflectedSolid for
generating placements of reflected volumes

Reflections can be applied to CSG and specific solids

17

Reflecting hierarchies of volumes Reflecting hierarchies of volumes -- 11

G4ReflectionFactory::Place(…)
Used for normal placements:

i. Performs the transformation decomposition
ii. Generates a new reflected solid and logical volume

Retrieves it from a map if the reflected object is already created
iii. Transforms any daughter and places them in the given mother
iv. Returns a pair of physical volumes, the second being a placement in the

reflected mother
G4PhysicalVolumesPair
Place(const G4Transform3D& transform3D, // the transformation

const G4String& name, // the actual name
G4LogicalVolume* LV, // the logical volume
G4LogicalVolume* motherLV, // the mother volume
G4bool noBool, // currently unused
G4int copyNo) // optional copy number

18

Reflecting hierarchies of volumes Reflecting hierarchies of volumes -- 22

G4ReflectionFactory::Replicate(…)

Creates replicas in the given mother volume
Returns a pair of physical volumes, the second being a replica in the
reflected mother

G4PhysicalVolumesPair

Replicate(const G4String& name, // the actual name
G4LogicalVolume* LV, // the logical volume

G4LogicalVolume* motherLV, // the mother volume
Eaxis axis // axis of replication
G4int replicaNo // number of replicas

G4int width, // width of single replica
G4int offset=0) // optional mother offset

19

User defined solidsUser defined solids

All solids should derive from G4VSolid and
implement its abstract interface

will guarantee the solid is treated as any other solid
predefined in the kernel

Basic functionalities required for a solid
Compute distances to/from the shape
Detect if a point is inside the shape
Compute the surface normal to the shape at a given point
Compute the extent of the shape
Provide few visualization/graphics utilities

20

What a solid should reply toWhat a solid should reply to……-- 11

EInside Inside(const G4ThreeVector& p) const;

Should return, considering a predefined tolerance:
kOutside - if the point at offset p is outside the shapes boundaries
kSurface - if the point is close less than Tolerance/2 from the surface
kInside - if the point is inside the shape boundaries

G4ThreeVector SurfaceNormal(const G4ThreeVector& p) const;

Should return the outwards pointing unit normal of the shape for the surface
closest to the point at offset p.

G4double DistanceToIn(const G4ThreeVector& p,
const G4ThreeVector& v) const;

Should return the distance along the normalized vector v to the shape from the
point at offset p. If there is no intersection, returns kInfinity. The first
intersection resulting from ‘leaving' a surface/volume is discarded. Hence, it is
tolerant of points on the surface of the shape

21

What a solid should reply toWhat a solid should reply to……-- 22
G4double DistanceToIn(const G4ThreeVector& p) const;

Calculates the distance to the nearest surface of a shape from an outside point p. The
distance can be an underestimate

G4double DistanceToOut(const G4ThreeVector& p,

const G4ThreeVector& v,
const G4bool calcNorm=false,

G4bool* validNorm=0,

G4ThreeVector* n=0) const;

Returns the distance along the normalised vector v to the shape, from a point at an
offset p inside or on the surface of the shape. Intersections with surfaces, when the
point is less than Tolerance/2 from a surface must be ignored. If calcNorm is true,
then it must also set validNorm to either:

True - if the solid lies entirely behind or on the exiting surface. Then it must set n to the
outwards normal vector (the Magnitude of the vector is not defined)
False - if the solid does not lie entirely behind or on the exiting surface

G4double DistanceToOut(const G4ThreeVector& p) const;

Calculates the distance to the nearest surface of a shape from an inside point p. The distance can
be an underestimate

22

Solid: more functionsSolid: more functions……

G4bool CalculateExtent(const EAxis pAxis,
const G4VoxelLimits& pVoxelLimit,
const G4AffineTransform& pTransform,

G4double& pMin, G4double& pMax) const;

Calculates the minimum and maximum extent of the solid, when under the specified
transform, and within the specified limits. If the solid is not intersected by the region, return
false, else return true

Member functions for the purpose of visualization:

void DescribeYourselfTo (G4VGraphicsScene& scene) const;

“double dispatch” function which identifies the solid to the graphics scene

G4VisExtent GetExtent () const;

Provides extent (bounding box) as possible hint to the graphics view

Interface to CAD systemsInterface to CAD systems
Models imported from CAD systems can describe the solid
geometry of detectors made by large number of elements with
the greatest accuracy and detail

A solid model contains the purely geometrical data representing the
solids and their position in a given reference frame
Material information is generally missing

Solid descriptions of detector models could be imported from
CAD systems

e.g. Euclid & Pro/Engineer
using STEP AP203 compliant protocol

Tracking in BREP solids created through CAD systems was
supported

but since Geant4 5.2 the old NIST derived STEP reader can no longer
be supported.

How to import CAD geometriesHow to import CAD geometries

Detector geometry description should be modularized
By sub-detector and sub-detector components
Each component in a separate STEP file

G4AssemblyCreator and G4Assembly classes from the
STEPinterface module should be used to read a STEP
file generated by a CAD system and create the
assembled geometry in Geant4

Geometry is generated and described through BREP shapes
Geometry modules for each component are assembled in
the user code

25

Importing STEP models:Importing STEP models:
example example --11

G4AssemblyCreator MyAC("tracker.stp");
// Associate a creator to a given STEP file.

MyAC.ReadStepFile();
// Reads the STEP file.

STEPentity* ent=0;
// No predefined STEP entity in this example.
// A dummy pointer is used.

MyAC.CreateG4Geometry(*ent);
// Generates GEANT4 geometry objects.

void *pl = MyAC.GetCreatedObject();
// Retrieve vector of placed entities.

G4Assembly* assembly = new G4Assembly();
// An assembly is an aggregation of placed entities.

assembly->SetPlacedVector(*(G4PlacedVector*)pl);
// Initialise the assembly.

26

Importing STEP models:Importing STEP models:
example example -- 22

G4int solids = assembly->GetNumberOfSolids();

// Get the total number of solids among all entities.
for(G4int c=0; c<solids; c++)

// Generate logical volumes and placements for each solid.
{

ps = assembly->GetPlacedSolid(c);

G4LogicalVolume* lv =
new G4LogicalVolume(ps->GetSolid(), Lead, "STEPlog");

G4RotationMatrix* hr = ps->GetRotation();
G4ThreeVector* tr = ps->GetTranslation();
G4VPhysicalVolume* pv =

new G4PVPlacement(hr, *tr, ps->GetSolid()->GetName(),
lv, experimentalHall_phys, false, c);

}

PART II

Electromagnetic Fields Electromagnetic Fields

28

Field Contents

1. What is involved in propagating in a field
2. A first example

• Defining a field in Geant4
3. More capabilities
4. Understanding and controlling the

precision

29

Magnetic field: overview
In order to propagate a particle inside a field (e.g.
magnetic, electric or both), we solve the equation
of motion of the particle in the field.
We use a Runge-Kutta method for the integration
of the ordinary differential equations of motion.

Several Runge-Kutta ‘steppers’ are available.
In specific cases other solvers can also be used:

In a uniform field, using the analytical solution.
In a nearly uniform field (BgsTransportation/future)
In a smooth but varying field, with new RK+helix.

30

Magnetic field: overview (cont)
Using the method to calculate the track's motion
in a field, Geant4 breaks up this curved path into
linear chord segments.

We determine the chord segments so that they
closely approximate the curved path.
We use the chords to interrogate the Navigator,
to see whether the track has crossed a volume
boundary.

31

Stepping and accuracy
You can set the accuracy of the volume intersection,

by setting a parameter called the “miss distance”
it is a measure of the error in whether the approximate track
intersects a volume.
Default “miss distance” is 3 mm.

One physics/tracking step can create several chords.
In some cases, one step consists of several helix turns.

miss distance

‘Tracking’ Step
Chords

real trajectory

32

Magnetic field: a first example
Create your Magnetic field class

Uniform field :
Use an object of the G4UniformMagField class

#include "G4UniformMagField.hh"
#include "G4FieldManager.hh"
#include "G4TransportationManager.hh“

G4MagneticField* magField= new
G4UniformMagField(G4ThreeVector(1.0*Tesla,

0.0, 0.0);

Non-uniform field :
Create your own concrete class derived from
G4MagneticField

Part 1/2

33

Magnetic field: a first example
Tell Geant4 to use your field

Find the global Field Manager
G4FieldManager* globalFieldMgr=
G4TransportationManager::
GetTransportationManager()

->GetFieldManager();

Set the field for this FieldManager,
globalFieldMgr->SetDetectorField(magField);

and create a Chord Finder.
globalFieldMgr->CreateChordFinder(magField);

Part 2/2

34

In practice: exampleN04
From geant4/examples/novice/N04/src/ExN04DetectorConstruction.cc

G 4 V P h y s i c a l V o l u m e * E x N 0 4 D e t e c t o r C o n s t
{
 / / -
 / / M a g n e t i c f i e l d
 / / -

 s t a t i c G 4 b o o l f i e l d I s I n i t i a l i z e d =
 i f (! f i e l d I s I n i t i a l i z e d)
 {
 E x N 0 4 F i e l d * m y F i e l d = n e w E x N 0 4 F i
 G 4 F i e l d M a n a g e r * f i e l d M g r
 = G 4 T r a n s p o r t a t i o n M a n a g e r : : G e t T
 - > G e t F i e l d M a n a g e r () ;
 f i e l d M g r - > S e t D e t e c t o r F i e l d (m y F i e l
 f i e l d M g r - > C r e a t e C h o r d F i n d e r (m y F i e
 f i e l d I s I n i t i a l i z e d = t r u e ;
 }

35

Beyond your first field
Create your own field class

To describe your setup’s EM field
Global field and local fields

The world or detector field manager
An alternative field manager can be associated
with any logical volume

Currently the field must accept position global
coordinates and return field in global coordinates

Customizing the field propagation classes
Choosing an appropriate stepper for your field
Setting precision parameters

36

Creating your own field
Create a class, with one key method – that calculates the

value of the field at a Point
Point [0..2] position
Point[3] timevoid ExN04Field::GetFieldValue(

const double Point[4],
double *field) const

{
field[0] = 0.;
field[1] = 0.;
if(abs(Point[2])<zmax &&
(sqr(Point[0])+sqr(Point[1]))<rmax_sq)
{ field[2] = Bz; }
else
{ field[2] = 0.; }

}

37

Global and local fields
One field manager is associated with the ‘world’

Set in G4TransportationManager
Other volumes can override this

By associating a field manager with any logical volume
By default this is propagated to all its daughter volumes

G4FieldManager* localFieldMgr=
new G4FieldManager(magField);

logVolume->setFieldManager(localFieldMgr,
true);

where ‘true’ makes it push the field to all the volumes it
contains.

38

Precision parameters

Errors come from
Break-up of curved trajectory into linear chords
Numerical integration of equation of motion

or potential approximation of the path,

Intersection of path with volume boundary.
Precision parameters enable the user to limit
these errors and control performance.

The following slides attempt to explain these
parameters and their effects.

39

Volume miss error

Parameter δchord

Effect of this parameter as δchord 0
s1step

propagator ~ (8 δchord R curv)1/2

Due to the approximation
of the curved path by
linear sections (chords)

so long as spropagator < s phys and spropagator > dmin
integr

dchord < δchord

δchord

dchord
Parameter

value

=

40

Integration error
Due to error in the numerical integration (of

equations of motion)

Parameter(s): εintegration

max(|| ∆r || / sstep , ||∆p|| / ||p||) < εintegration

It limits the size of the integration step.
For ClassicalRK4 Stepper

s1step
integration ~ (εintegration)1/3

for small enough εintegration
The integration error should be influenced by the
precision of the knowledge of the field
(measurement or modeling).

s1step

∆r
Nsteps ~ (εintegration)-1/3

41

Integration errors (cont.)
In practice

εintegration is currently represented by 3 parameters
epsilonMin, a minimum value (used for big steps)
epsilonMax, a maximum value (used for small steps)
DeltaOneStep, a distance error (for intermediate steps)

εintegration= δ one step / s physics

Determining a reasonable value
I suggest it should be the minimum of the ratio
(accuracy/distance) between sensitive components, ..

Another parameter
dmin is the minimum step of integration

(newly enforced in Geant4 4.0)

Defaults
0.5*10-7

0.05
0.25 mm

Default
0.01 mm

42

Intersection error
In intersecting approximate path with
volume boundary

In trial step AB, intersection is found
with a volume at C
Step is broken up, choosing D, so

SAD = SAB * |AC| / |AB|

If |CD| < δintersection
Then C is accepted as intersection
point.

So δint is a position error/bias

A

C

B

D

SAD

p

43

Intersection error (cont)
So δint must be small

compared to tracker hit error
Its effect on reconstructed
momentum estimates should be
calculated

And limited to be acceptable

Cost of small δint is less
than making δchord small
Is proportional to the number of
boundary crossings – not steps.

Quicker convergence / lower cost
Possible with optimization

adding std algorithm, as in BgsLocation

D

A

E

F

If C is rejected,
a new intersection
point E is found.
E is good enough
• if |EF| < δint

44

The ‘driving force’
Distinguish cases according to the
factor driving the tracking step length

‘physics’, eg in dense materials
fine-grain geometry

Distinguish the factor driving the
propagator step length (if different)

Need for accuracy in ‘seeing’ volume
Integration inaccuracy

Strongly varying field

Potential
Influence

G4 Safety
improvement

Other Steppers,
tuning dmin

45

Where to find the parameters

0.05PropagatorInFieldepsilonMax
5 10-7PropagatorInFieldepsilonMin

0.25 mmFieldManagerDeltaOneStepδ one step

0.10 mmFieldManagerDeltaIntersectionδintersection

0.01 mmChordFinderstepMinimumdmin

3.0 mmChordFinderDeltaChordδmiss

DefaultClassNameParameter

46

What if time does not change much?
If adjusting these parameters (together) by a
significant factor (10 to 100) does not produce
results,

Then it is likely that the field propagation is not the
dominant (most CPU intensive) part of your
program.
Look into alternative measures

modifying the physics ‘cuts’ – ie production thresholds
To create fewer secondaries, and so track fewer particles

determining the number of steps of neutral vs charged
particles,

To find whether neutrons, gammas ‘dominate’
profiling your application

You can compile using G4PROFILE=yes, run your program and
then use “gprof” to get an execution profile.

	Geometry and Fields:
	Detector DescriptionAdvanced features
	Debugging geometries
	Debugging tools: DAVID
	Debugging run-time commands
	Debugging run-time commands - 2
	Debugging tools: OLAP
	Debugging tools: OLAP
	Visualizing detector geometry tree
	The geometrical tree: example
	GGE (Graphical Geometry Editor)
	Grouping volumes
	G4AssemblyVolume
	Assembly of volumes:example -1
	Assembly of volumes: example -2
	Reflecting solids
	Reflecting hierarchies of volumes - 1
	Reflecting hierarchies of volumes - 2
	User defined solids
	What a solid should reply to…- 1
	What a solid should reply to…- 2
	Solid: more functions…
	Interface to CAD systems
	How to import CAD geometries
	Importing STEP models:example -1
	Importing STEP models:example - 2
	PART II
	Field Contents
	Magnetic field: overview
	Magnetic field: overview (cont)
	Stepping and accuracy
	Magnetic field: a first example
	Magnetic field: a first example
	In practice: exampleN04
	Beyond your first field
	Creating your own field
	Global and local fields
	Precision parameters
	Volume miss error
	Integration error
	Integration errors (cont.)
	Intersection error
	Intersection error (cont)
	The ‘driving force’
	Where to find the parameters
	What if time does not change much?

