
Object-Oriented
Design and
Implementation

Makoto ASAI
Hiroshima Institute of Technology

(Geant4 / ATLAS)

Makoto.Asai@cern.ch

CSC2000 - Marathon

2

Contents

1. Introduction

2. Class/Object, Encapsulation

3. Class hierarchies, Inheritance

4. Abstraction, Polymorphism

5. Unified Software Development Process

Chapter 1

Introduction

4

Motivation of this lecture

v If you are writing your code which is
exclusively used by yourself and it will be
used within a temporary short duration, you
can ignore this lecture.

v But you are developing your code with
your colleagues and/or your code will be
used by your collaborators for years, you
should be aware of “good software”.

5

Motivation of this lecture
v Good software is

– Easy to understand the structure

– Easy to find/localize/fix a bug

– Easy to change one part without affecting to
other parts

– Well modularized and reusable

– Easy to maintain and upgrade

– etc. etc.

v Object-Orientation is a paradigm which
helps you to make a good software.

6

Motivation of this lecture

v Use of so-called “Object-Oriented language”
such as C++ or Java does not guarantee the
Object-Oriented Programming.
– Badly written C++/Java code is worse than badly

written Fortran code.

v Well designed, Object-Oriented good
software can be relatively easily
implemented by using Object-Oriented
language.
– Language is a tool to realize Object-Orientation.

7

Motivation of this lecture

v In this lecture I will show you some basic
concepts of Object-Oriented Programming.

v These concepts are more important than the
detailed syntaxes of a language and they
will guide you to learn C++/Java as a
language which stands on Object-
Orientation.

8

Object-Oriented Programming

v Object-Oriented Programming (OOP) is the
programming methodology of choice in the 1990s.

v OOP is the product of 30 years of programming
practice and experience.
– Simula67

– Smalltalk, Lisp, Clu, Actor, Eiffel, Objective C

– and C++, Java

v OOP is a programming style that captures the
behavior of the real world in a way that hides
detailed implementation.

9

Fundamental Ideas

v When successful, OOP allows the problem
solver to think in terms of the problem domain.
– Requirements document

– Object-Oriented Analysis and Design (OOA&D)

– CASE tools

v Three fundamental ideas characterize Object-
Oriented Programming.
– Class/Object, Encapsulation

– Class hierarchies, Inheritance

– Abstraction, Polymorphism

Chapter 2

Class/Object and
Encapsulation

11

Class and Object

v Object-Oriented Programming (OOP) is a
data-centered view of programming in
which data and behavior are strongly linked.

v Data and behavior are conceived of as
classes whose instances are objects.

v OOP also views computation as simulating
behavior. What is simulated are objects
represented by a computational abstraction.

12

Abstract Data Type
v The term abstract data type (ADT) means a

user-defined extension to the native types
available in the language.

v ADT consists of
– a set of values

– a collection of operators and methods that can act
on those values

13

Abstract Data Type
v Class objects are class variables. OOP allows

ADT to be easily created and used.
– For example, integer objects, floating point

number objects, complex number objects, four
momentum objects, etc., all understand addition
and each type has its own code of executing
addition.

v An ADT object can be used in exactly same
manner as a variable of native type. This
feature increases the readability of the code.

FourMomentum a, b, c;

c = a + b;

14

Abstract Data Type
v In OOP, classes are responsible for their

behavior.

class FourMomentum

{

 public:

 FourMomentum(double px, double py, double pz, double e);

 ~FourMomentum();

 public:

 FourMomentum& operator = (const FourMomentum & right);

 FourMomentum operator + (const ThreeMomentum & right);

15

Encapsulation
v Encapsulation consists of

– the internal implementation details of a specific type
– the externally available operators and functions that

can act on objects of that type

v The implementation details should be
inaccessible to client code that uses the type.

v Make data members private and provide public
Set/Get methods accessible to them.

v Make all Get and other methods which do not
modify any data member “cosnt”.
– “const” methods can be accessed even for constant

ADT objects.
– Strict use of constant ADT objects allows you the

safe programming.

16

Encapsulation
v Changes of the internal implementation should

not affect on how to use that type externally.
class FourMomentum

{

 …

 private:

 double m_Px;

 double m_Py;

 double m_Pz;

 double m_E;

 public:

 void SetP(double p);

 double GetP() const;

....

class FourMomentum

{

 …

 private:

 double m_P;

 double m_Theta;

 double m_Phi;

 double m_E;

 public:

 void SetP(double p);

 double GetP() const;

....

17

G4Step and G4StepPoint

G4St ep
f St epLengt h : G4doubl e
f Tot al Ener gyDepos i t : G4doubl e

I ni t i a l i zeSt ep()
Updat eTr ack()
Get Del t aMoment um()
Get Del t aTi me()
Get Pr eSt epPoi nt ()
Get Pos t St epPoi nt ()

G4Tr ack

G4St epPo i nt
f Posi t i on : G4Thr eeVect or
f Gl obal Ti me : G4doubl e
f Local Ti me : G4doubl e
f Moment umDi r ect i on : G4Thr eeVect or
f Ki net i cEner gy : G4doubl e

Get Posi t i on()
Get Gl obal Ti me()
Get Local Ti me()
Get Moment um()
Get Tot al Ener gy()
Get Vel oci t y()
Get Bet a()

G4VTouchabl e

G4Touchabl eHi s t or y

f pPr eSt epPoi nt

1

f pPost St epPoi nt

1

f pTr ack
1

Chapter 3

Class hierarchies and
Inheritance

19

Class hierarchies and Inheritance
v Inheritance is a mean of deriving a new class

from existing classes, called base classes. The
newly derived class uses existing codes of its
base classes.

v Through inheritance, a hierarchy of related
types can be created that share codes and
interfaces.

v A derived class inherits the description of its
base class. Inheritance is a method for
copying with complexity.

20

Class hierarchies and Inheritance
v It is better to avoid protected data members.

– Make data members in a base class private and
provide protected non-virtual access methods to
them.

v Avoid unnecessary deep hierarchies.
– Should a trajectory class and a detector volume

class be derived from a single base class, even
though both of them have a “Draw()” method?

– Follow the naïve concepts everyone can easily
understand.

21

Class hierarchies and Inheritance

22

Class hierarchies and Inheritance

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParametrized

G4VisAttributes

G4LogicalVolume

v Avoid unnecessary multiple inheritance.
– In many cases, delegation can solve the problem.

23

Comments on Collection
v Type-unsafe collection is quite dangerous.

– C++ case, pointer collection of void or very bogus
base class

– Java case, default vector collection of “Object”
base class

v Type-unsafe collection easily reproduces the
terrible difficulties we experienced with the
Fortran common block.

Chapter 4

Abstraction and
Polymorphism

25

Rapid Prototyping

v Abstraction and Polymorphism enable
“Rapid Prototyping”.
– High level class diagrams and scenario

diagrams should be made first before going to
the detailed design/implementation of actual
concrete classes.

– “Proof of concepts” demonstration must be
done with just a couple of concrete classes (or
just one dummy concrete class) for each
abstract base class.

26

Abstraction and Polymorphism

v Abstraction and polymorphism localizes
responsibility for an abstracted behavior.

v They also help the modularity and
portability of the code.
– For example, Geant4 is free from the choice

of histogramming and persistency techniques.
Also, GUI and visualization are completely
isolated from Geant4 kernel via the abstract
interfaces.

27

Polymorphism

v Polymorphism has lots of forms.
– Function and operator overloading

– Function overriding

– Parametric polymorphism

Refer A.Johnson’s lecture for dynamic
class loading featured in Java.

28

Operator Overloading
v In C++, an operator is overloadable . A

function or an operator is called according to
its signature, which is the list of argument
types.
– If the arguments to the addition operator are

integral, then integer addition is used. However,
if one or both arguments are floating point, then
floating point addition is used.

v Operator overloading helps the readability.
double p, q, r;

r = p + q;

FourMomentum a, b, c;

c = a + b;

29

Function Overriding
v Using virtual member functions in an

inheritance hierarchy allows run-time
selection of the appropriate member function.
Such functions can have different
implementations that are invoked by a run-
time determination of the subtype (virtual
method invocation, dynamic binding).

G4VHit* aHit;

for(int i = 0; i < hitCol->entries(); i++)

{

 aHit = (*hitCol)[i];

 aHit->Draw();

}

30

Function Overloading

v Functions of same name are distinguished
by signatures.

v For the case of function overloading of
“non-pure virtual” virtual functions, all (or
none) of them should be overridden.
– Overriding “overrides” overloading!!!
– Intrinsic source of a bug even though compiler

warns.
– You will see this warning for

G4VParameterisedVolume…

31

class Base {

 public:

 Base() { ;}

 virtual void Show(int i) { cout << “Int” << endl; }

 virtual void Show(double x) { cout << “Double” << endl; }

}

Class Derived : public Base {

 public:

 Derived() { ;}

 virtual void Show(int i) { cout << “Int” << endl; }

}

main() {

 Base* a = new Derived();

 a->Show(1.0);

}

Gives “Int”!!!

32

Template

v C++ also has parametric polymorphism,
where type is left unspecified and is later
instantiated.

v STL (Standard Template Library) helps a lot
for easy code development.

33

CSCG4ExEmCalorimeter
class CSCG4ExEmCalorimeterHit : public G4VHit

{

 public:

 CSCG4ExEmCalorimeterHit();

 CSCG4ExEmCalorimeterHit(G4int z);

 virtual ~CSCG4ExEmCalorimeterHit();

 const CSCG4ExEmCalorimeterHit& operator=(const

CSCG4ExEmCalorimeterHit &right);

 virtual void Draw();

 virtual void Print();

 ………

} ;

typedef G4THitsCollection<CSCG4ExEmCalorimeterHit>

CSCG4ExEmCalorimeterHitsCollection;

Chapter 5

Unified Software
Development Process

35

Software Development Process

v A software development process is the set of
activities needed to transform a user’s
requirements to a software system.

v The Unified Software Development Process
is a software development process which is
characterized by
– Use-case driven

– Architecture centered

– Iterative and incremental

User’s
requirements

Software
Development

Process

Software
System

36

Requirements
v There are many different types of

requirements.
– Functional requirements
– Data requirements
– Performance requirements
– Capacity requirements
– Accuracy requirements
– Test/Robustness requirements
– Maintainability, extensibility, portability, etc.,

“ability” requirements

v Requirements drives use-cases and
architectures.

37

Use-case

v A software system should be used by the
users. Thus the developers of the system must
know the users’ needs.

v The term user refers not only to human users
but also to other system which interacts with
the system being developed.

v An interaction from/to the user is a use-case.
A use-case is a piece of functionality in the
system which captures a requirement.

38

Architecture
v The role of software architecture is similar

in nature to the role of architecture plays in
building construction.
– A plan of building is looked at from various

viewpoints, such as structure, services, heat
conduction, electricity. This allows the builder
to see a complete picture before actual
construction.

– The software architecture must be influenced
by the requirements of both use-case
dependent and use-case independent.

v Architecture is not a framework.

39

Major UML diagrams
v Dynamic diagrams

– Use-case diagram

– Scenario (sequence) diagram

– State diagram

v Static diagrams
– Domain Model diagram

– Class diagram

Refer R.Jones’ lecture for details of UML.

40

Domain Model diagram
v The term “problem domain” refers to the area

which encompasses real-world things and
concepts related to the problem that the system
is being designed to solve.

v Domain modeling is a task of discovering
objects (classes) that represent those things and
concepts.

Package1
+ Cl as s A

Package2
+ Cl as sP

Package3
+ Cl as s X

Cl assA

Cl assB Cl assC

41

Use-case diagram

v Major use-cases can be found
in the user’s functional
requirements.

v Two courses of use-cases must
be designed simultaneously.
– Basic courses

– Alternative courses

UseCase 1

Act or

UseCase 2

42

State diagram
v State diagram captures the

lifecycle of objects.

v This cycle is expressed in
terms of the different states
that the objects can assume,
and the events that cause
state changes.

St ar t

St a t e 1

St a t e 2

End

St at e 3

43

Scenario (sequence) diagram

v A scenario diagram
should be prepared for
each use-case.

v Methods necessary for a
class are found with
writing this diagram.

Obj ect A :
Cl ass A

Obj ect P :
Cl as sP

Obj ect X :
Cl ass X

Met hod1
Met hod2 Sel f Met hod1

44

Scenario diagram
(Geant4/Intercoms)

session or
kernel

theUImanager :
G4UImanager

theCommand :
G4UIcommand

aParameter :
G4UIparameter

aMessenger :
G4UImessenger

destination
Class

aCommandTree :
G4UIcommandTree

1: applyCommand(G4String)

3: doIt(G4String)
4: isOmittable()

5: getCurrentAsDefaultFlag()

6: getCurrentValue(G4UIcommand*)

9: checkNewValue(G4String)

10: setNewValue(G4UIcommand*)

7: get

11: set

8: getDefaultValue()

If a value of a parameter is given with the
command, 4,5,6,7,8 will be skipped.
If a value is not given, and "isOmittable()" is
true, 5 will be invoked.
If "getCurrentAsDefaultFlag()" is true, 6 will
be invoked, otherwise 8 will be invoked.

2: findPath(G4String)

45

Class diagram
v Domain Model diagram is upgraded to class

diagram by adding data members, methods,
multiplicities, etc.

Cl as s B Cl as s C
Cl as s ABC
dat aA1

opnameA1()

Cl as sA
dat a1
dat a2

opname1()
opname2()

1. . *

1

Cl as sPQR
dat a Pqr

opna mePqr () 1

1. . *

46

Class diagram (Geant4/Intercoms)

G4UImanager

getUIpointer()
addNewCommand()
removeCommand()
applyCommand()
storeHistory()
executeMacroFile()
setSession()
setCoutDestination()
setCerrDestination()
getTree()
getCurrentValues()
startSession()

G4UIcommandTree

addNewCommand()
findPath()
list()
removeCommand()

G4UIparameter

checkNewValue()
isOmittable()
getDefaultValue()
getCurrentAsDefaultFlag()
setDefaultValue()
setRange()
setParameterCandidate()
setCurrentAsDefault()

G4UImessenger

getCurrentValue()
setNewValue()

G4UIcommand

getCurrentValue()
doIt()
list()
setParameter()
setGuidance()
setRange()
availableForStates()
isAvailable()
checkNewValue()
valueOf()

strstreambuf

sync()

parameter
1

0..n

messenger
1..n

1

G4VUIsession

sessionStart()
pauseSessionStart()
ReceiveG4cout()
ReceiveG4cerr()

G4strstreambuf

setCoutDestination()

ostream

G4UIbatch

G4VStateDependent

pauseSession()

treeTop
1

1

Coutbuf 1

Cerrbuf

1

g4cout
1

g4cerr

1

currentSession

0..1

tree
1

0..n

command

1

0..n

guidance

1

0..1

destinationSession

1

47

Spiral approach
v Four steps

– Object-Oriented Analysis
– Object-Oriented Design
– Implementation
– Test

v Repeat these steps several
turns to make a software
products.

v Don’t hesitate to update
diagrams in earlier cycles.

OOA
O

O
D

Implemen
tation

T
es

t

